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Preface

This quarterly publication provides archival reports on developments in programs

managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space

communications, radio navigation, radio science, and ground-based radio and radar astron-
omy, it reports on activities of the Deep Space Network (DSN) and its associated Ground

Communications Facility (GCF) in planning, in supporting research and technology, in

implementation, and in operations. Also included is TDA-funded activity at JPL on data

and information systems and reimbursable DSN work performed for other space agen-

cies through NASA. The preceding work is all performed for NASA's Office of Space

Operations (OSO).

In geodynamics, the publication reports on the application of radio interferometry

at microwave frequencies for geodynamic measurements. In the search for extraterrestrial

intelligence (SETI), it reports on implementation and operations for searching the micro-

wave spectrum. In solar system radar, it reports on the uses of the Goldstone solar system
radar for scientific exploration of the planets, their rings and satellites, asteroids, and

comets. These three programs are performed for NASA's Office of Space Science and

Applications (OSSA).

Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech
President's Fund which involve the TDA Office are included.

This and each succeeding issue of the TDA Progress Report will present material in

some, but not necessarily all, of the following categories:

OSO Tasks

DSN Advanced Systems

Tracking and Ground-Based Navigation

Communications, Spacecraft-Ground

Station Control and System Technology

Network Data Processing and Productivity

DSN Systems Implementation

Capabilities for Existing Projects
Capabilities for New Projects
New Initiatives

Network Upgrade and Sustaining

DSN Operations
Network Operations and Operations Support

Mission Interface and Support

TDA Program Management and Analysis

GCF Implementation and Operations

Data and Information Systems

OSSA Tasks:

Search for Extraterrestrial Intelligence

Geodynamics

Geodetic Instrument Development

Geodynamic Science

Goldstone Solar System Radar

Discretionary Funded Tasks

iii
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Source and Event Selection for Radio-Planetary Frame-Tie

Measurements Using the Phobos Landers

R. Linfield and J. Ulvestad

Tracking Systemsand Applications Section

The Soviet Phobos Lander mission will place two spacecraft on the Martian moon

Phobos in 1989. Measurements of the range from Earth-based stations to the landers will
allow an accurate determination of the ephemerides of Phobos and Mars. Delta VLBI

between the landers and compact radio sources nearby on the sky will be used to obtain

precise estimates of the angular offset between the radio and planetary reference frames.

The accuracy of this frame-tie estimate is expected to be in the vicinity of i0 nrad,

depending on how well several error sources can be controlled (calibrated or reduced).

Many candidate radio sources for VLBI measurements have been identified, but addi-

tional work is necessary to select those sources which have characteristics appropriate to

the present application. Strategies for performing the source selection are described
below.

I. Introduction

The technique of Very Long Baseline Interferometry
(VLBI) allows very precise navigation of spacecraft [1 ]. Radio

transmissions from the spacecraft are received at two widely

separated radio telescopes on the earth, and recorded on mag-

netic tape. The data from the two telescopes are later corre-
lated. This allows the measurement of the delay in arrival time

between the two telescopes of wavefronts from the spacecraft.

This delay can be measured very accurately (much less than

1 nsec error). A compact extragalactic radio source nearby

(typically 10 degrees or less away) on the sky is observed

immediately before or after (or both before and after) the

spacecraft observation. This procedure allows the location of

the spacecraft on the sky to be measured very accurately

(5-50 nanoradians) with respect to the radio source. Exten
sive VLBI observations at JPL over the last ten years have led

to the development of a catalog of compact radio sources

over the northern 75 percent of the sky, with positions accu-
rate to 5-15 nanoradians (nrad), as described in [2]. The set

of radio sources in this catalog forms what is known as the

"radio frame." Because of the enormous distances (mostly

more than 1 gigaparsec: 3 X 1022 km) of the objects in this

catalog (the majority of which are quasars), their angular

motions are negligible. Therefore, the radio frame is believed

to be inertial and is stable at the approximate level of the

measurement accuracy.

A VLBI measurement of a spacecraft with respect to any

one of these compact radio sources (AVLBI) establishes the

spacecraft position in the radio frame to an accuracy 5, where

8 is the vector sum of the spacecraft-radio source measure-

ment error and the source position error in the radio source



catalog.The value of 8 is as small as 15-25 nrad currently [1],

with values of 5-10 nrad expected within 5 years. Most deep

space navigation purposes require the location of a space-

craft with respect to a planet or natural satellite. To make
optimum use of AVLBI for navigation, it is therefore neces-

sary to measure the location of solar system objects in the

radio frame, thus performing a "radio-planetary frame-tie."

Currently, the accuracy of this frame-tie is approximately

200 nrad for the inner planets, and somewhat poorer for the
outer planets [3]. An improvement in this value is critical for

high-accuracy target-relative navigation by AVLBI.

II. The Phobos Lander Mission

The Soviet Phobos Lander Mission, scheduled for dual

launches in July 1988, will land two spacecraft on the Mar-

tian moon Phobos in the spring of 1989. The spacecraft life-

time is estimated at 2-3 years. Ranging measurements between
Earth and the landers will determine the orbit of Phobos

around Mars (orbital period 7 hr 39 min) very precisely (much

better than 5 nrad as seen from the earth). In addition, these

measurements will improve our knowledge of the Martian
orbit, which has been most accurately measured by ranging

to the two Viking landers. Ranging measurements to a space-
craft fixed on the surface of a planet or a natural satellite are

more useful than ranging measurements to a free-flying space-

craft because non-gravitational forces on a planet or natural

satellite are negligible. This greatly reduces the number of

parameters and the magnitude of systematic errors in the orbit
determination process. With ranging data to the Viking Landers

starting in 1976 and similar data to the Phobos Landers as

late as 1991 or 1992, secular and long-period terms in the
orbit of Mars can be well measured. This should allow the Mar-

tian orbit to be determined to about 5 nrad relative to the

orbit of the earth around the sun.

The orbits of the earth and Mars will then form a planetary

frame which is as accurate and stable as the radio frame, except

for a very slow rotation of the planetary frame due to unmod-

eled effects such as unknown asteroid masses [4]. The orbits

of other planets will be tied to this frame to variable accuracy
(15-30 nrad for Venus; 200--400 nrad for the gas giants).

In addition to ephemeris improvement, the Phobos Lander

Mission also provides the opportunity for accurate radio-

planetary frame-tie measurements. Each lander will have a

"VLBI broadcast mode," with two coherent tones spaced

14.71425 MHz apart on the downlink frequency of 1.7 GHz.

Delta VLBI measurements of a lander and a compact radio

source nearby on the sky can locate the lander and therefore

Mars in the radio frame (this is possible because the positions

of Phobos and Mars will be tied together to much less than

5 nrad). A cursory error analysis concludes that a measure-

ment with an accuracy of 5-10 nrad can be obtained with a
lander-radio source separation of 2 degrees or less, ff adequate

accuracy can be achieved in the calibration of instrumental

phase errors in the ground system. 1 The error analysis assumed

one measurement each of the lander and radio source, closely

spaced in time. This separation is much less than for most
current AVLBI measurements. Phobos Lander transmissions

will be at a single frequency, which precludes direct calibration

of the ionosphere or solar plasma. Furthermore, that fre-

quency (1.7 GHz) is sufficiently low that phase errors due to

charged particles in the ionosphere or solar plasma are large.

For AVLBI measurements these errors are reduced, approxi-

mately by the spacecraft-radio source separation in radians.

Restricting AVLBI measurements to lander-radio source

separations of less than 2 degrees is the most obvious tech-

nique for achieving high accuracy. However, it is not the only

possible technique. Larger separations, with well-studied com-

pact radio sources, could be used if several error sources (e.g.,
the troposphere, or charged particles) can be accurately cali-

brated. One possible technique is the local network approach
[5], in which observations are made of several compact radio

sources that are near the spacecraft on the sky. This process

allows several atmospheric, earth orientation, and clock param-
eters to be determined from the data. These techniques (other

than that of using small lander-source separations) will not be

discussed further in this article. However, a careful error

analysis is needed to determine their potential accuracy for

Phobos Lander frame-tie measurements. A hybrid technique

with fairly small lander-source separations and some calibra-

tion methods may prove to be optimum.

If small lander-source separations are used, it is necessary

to begin the source selection process now. The Soviets will fix

the lander transmission times in November 1987. Close passes

between Mars and radio sources last for approximately 1 day

or less time, and we must therefore determine all potential
sources soon. There will be time between November 1987 and

the arrival at Phobos to decide which of these sources (and

what strategies) to use. For sources far (>5 degrees) from the

path of Phobos, the lander-source distance changes propor-

tionately much more slowly. The scheduling of observations
is therefore much more flexible.

IlL Source Selection

The ideal compact radio source for VLBI astrometry would

be very strong (flux density >10 Jy), with all its emission con-

centrated within a region on the sky much smaller than 1 nrad

IC. E. Hildebrand, "First Cut at Phobos Lander VLBI Errors," IOM

335.1-87-29 (internal document), Jet Propulsion Laboratory, Pasa-
dena, California, February 3, 1987.



diameter. In practice, there are no such sources. The extent
to which actual radio sources deviate from this ideal introduces

two types of error into VLBI measurements: statistical error
and error due to source structure effects. The flux density

(total power received at the earth per unit area and frequency
interval) and the size of a radio source both influence the S/N

of a VLBI measurement. For VLBI, the appropriate measure

of source strength is the correlated flux density. Very approxi-

mately (usually within a factor of 2-3), the correlated flux

density is the power received from a strip on the sky with

a width one-half the fringe spacing and oriented perpendicular

to the vector between the two telescopes (the baseline vector).

For a pair of telescopes separated by a distance d, the fringe

spacing is X/(d[sin 0[), where X is the observing wavelength,
and 0 is the angle between the source direction and the base-
line vector [6].

The ratio of correlated flux density to total flux density is

defined as the visibility. The visibility is always between 0 and

1, with the larger values implying more compact sources. Many
radio sources have visibilities of 0 on intercontinental baselines

(source sizes much larger than the fringe spacing), a few have
visibilities only slightly less than 1.0 (source sizes less than half

a fringe spacing), and many others have values somewhere in

between. The visibility is a function of baseline length, orien-

tation, and observing frequency. It will not be the same on the

two primary Deep Space Network (DSN) baselines (Spain-
California and California-Australia). Actual visibilities can

only be determined by VLBI observations, although other

information (e.g., source spectral index or connected-element

interferometry) can help in predicting visibilities.

The flux densities of compact radio sources vary with time,

typically on time scales of a few years. At 8.4 GHz, this is an
important effect, as sources can strengthen or weaken by a
factor of 2 in 1-2 years. However, at 1.7 GHz, source varia-

bility is comparatively weak. In a period of 5 years, almost no

sources will vary by more than 20 percent. Therefore, we need
not worry about source variability for the Phobos Lander
Mission.

The observing frequency for the Phobos Lenders is 1.7 GHz.

All of our VLBI catalog observations are at X-band (8.4 GHz)
and S-band (2.3 GHz). Correlated flux densities of radio

sources at 1.7 GHz will usually be within a factor of two of
correlated flux densities at 2.3 GHz. For Phobos Lander frame-

tie measurements, a source with 50 mJy correlated flux den-

sity provides an acceptably small statistical error, if we have
two 70 m antennas and receivers with 56 MHz bandwidth. We

have set a requirement of 100 mJy correlated flux density on
intercontinental baselines, with a preference for sources with

correlated flux densities of 200 mJy or greater.

In addition to reduction in S/N, a non-zero source size

introduces systematic error. VLBI observations of a compact

radio source will measure a source position that depends on

baseline length and orientation. The dependence is compli-
cated [7], but the magnitude of the effect can be estimated

within a factor of 3-4 by making measurements of the corre.
lated flux density at several hour angles on the baselines that

will be used for frame-tie measurements. In general, sources
with high visibilities (greater than about 0.5) have small source

structure effects on astrometry: less than 5 nrad at 1.7 GHz.

Sources with lowel visibilities may or may not have signifi-

cant structure problems; it depends on the details of the

structure. Correlated flux density measurements can be done

during astrometric experiments on these sources, although

extrapolating the effect from 2.3 GHz to 1.7 GHz introduces

some uncertainty. We expect to discard between 10 percent

and 30 percent of the candidate sources that have adequate
correlated flux density, because those sources have struc-

tures which could cause unacceptable systematic errors.

A potential problem related to the source structure effect

discussed above is the dependence of source position on observ-
ing frequency. Physically, this is due to the fact that lower

frequency radiation arises from regions of lower particle energy

and lower magnetic fields. Because there are strong spatial
gradients of these properties in compact radio sources, and

because most compact radio sources are strongly asymmetri-

cal, the emission centroid varies with emission frequency. This
effect has been observed to be as large as 10-15 nrad for
3C 273 between 10.7 GHz and 1.7 GHz. This is an extreme

case (perhaps the largest of any source in the sky), and for
almost all sources the effect will be less than 2-3 nrad. A

source like 3C 273 can be identified (and removed from the

catalog) by its low visibility (_0.1)on intercontinental base-

lines. We therefore expect that position shifts due to the
lower observing frequency will not pose a major problem.

If the radio frame were based on astrometric observations

at 1.7 GHz, this effect would not be important. However, the

radio frame is based on 8.4 GHz observations (with 2.3 GHz

observations for ionospheric calibration), so the position off

set between 8.4 GHz and 1.7 GHz is important. More analysis
is needed to estimate the magnitude of this effect, and to

determine if it can be calibrated. It may be possible to hold

the effect to an acceptable level by selecting very compact
sources, which are identified by their high visibilities.

If a candidate source lies within 1-2 degrees of the path of

Phobos on the sky and has acceptable correlated flux density
and structure, it is suitable for a frame-tie measurement.

However, before the final data analysis can be performed, it

is necessary to determine the source position to 5-10 nrad by



astrometric VLBI observations. This is a time-consuming
process, and requires a large amount of antenna time. With

the advent of wide-bandwidth recording capability at the DSN

sites, substantially less antenna time will be needed. We may

be able to obtain 5-10 nrad source positions for all successful

candidates in 1-2 years, given adequate manpower and antenna

time. However, accurate astrometry of candidate sources

remains a problem, and obtaining 10 nrad source positions for

all of them will be very difficult. We will probably have to

settle for less accurate positions, or concentrate on a subset
of the candidate sources.

Sources in the DSN Astrometric Catalog [2] have adequate

correlated flux density on intercontinental baselines (greater

than 250 mJy at S-band), and have positions known to 5-15

nrad. Table 1 presents the sources from that catalog which lie

within 2 degrees of the path of Phobos between March 15,

1989, and May 1, 1992. Because Phobos is always within 30 sec

of Mars on the sky, the ephemeris of Mars was used for this

and all other source searches presented here. In Table 1, the

epoch and distance of closest approach are given, along with

the source name. The angular separation between Mars and the
Sun at this epoch is also given. The relevance of this quantity

is discussed in the section "Selection Among Candidate

Events." The angular rate of motion of Mars on the sky at

the epoch of closest approach is also listed. This value allows

the Mars-radio source separation at nearby times to be easily
calculated by the Pythagorean rule. (The path of Mars on the

sky can be approximated as a straight line for short times.)

For several technical reasons, as discussed in the section

"Selection Among Candidate Events," many apparently suit-
able candidate events may not be usable for frame-tie measure-
ments. It is therefore desirable to search additional radio

source catalogs in order to get more candidate events.

As a result of searches for navigation sources for various

JPL missions (Voyager, Galileo, and Magellan), an ecliptic

catalog of compact radio sources has been developed [8],

[9]. These sources are compact, with correlated flux densities

greater than about 100 mJy at S-band on intercontinental

baselines. They should nearly all have greater than 100 mJy

correlated flux density at 1.7 GHz, and are suitable for AVLBI

measurements. However, astrometric VLBI observations have

not yet been performed on these sources, and their positions

are known only to about 1 arc second. Table 2 presents

sources from this catalog which lie within 1 degree of the path

of Mars in the period March 15, 1989, to May 1, 1992. The
correlated flux densities of these sources at S.band on inter-

continental baselines are given. For sources with multiple

observations, the range of observed correlated flux densities

is given.

A third useful set of radio sources is the VLA Calibrator

Catalog. These sources are strong (more than 0.5 Jy) and usually

dominated by moderately compact components (less than 1 sec

in size). They have positions known to 0.3 see or better. Their
correlated flux densities on intercontinental baselines will be

less than the catalog flux density by an amount that cannot

be predicted for any given source. However, the correlated

flux density will be at least 30 percent of the catalog flux den-

sity in many cases. Therefore, many of these sources will be

good candidates for Phobos Lander frame-tie measurements.
Table 3 presents sources from this catalog (and from addi-
tional sets of sources which have been observed with the

VLA), which lie within I degree of the path of Mars in the

period March 15, 1989, to May 1, 1992. Their 1.7 GHz flux
densities are listed.

A fourth useful catalog of radio sources is the MIT-Green

Bank Catalog [10]. This consists of approximately 6000

sources in the declination band 0 to 20 degrees, with total

flux density at 5 GHz greater than 60 mJy. For many of these

sources, there is little or no information beyond the total

source flux density and the source position (30 arc seconds 1 o
uncertainty). Table 4 lists aU sources from this catalog which

lie within 30 arc minutes of the Martian trajectory from

March 15, 1989, to May 1, 1992. Table 5 lists sources which

lie between 30 arc minutes and one degree of the Martian

trajectory for the same period. In both tables, only sources

with a total 5 GHz flux density greater than 150 mJy are
included, and the flux density is listed. Many of these sources

will have compact components too weak to use for frame-tie

measurements. Only interferometric observations can deter-
mine which are suitable.

Numerous sources are in more than one of the catalogs
which were searched. Those' sources (if they lie close to the

orbit of Mars) are listed only once: with the first catalog in

which they appear. (This is the catalog for which the most

source information is known.)

IV. Selection Among Candidate Events

One parameter which is listed for all candidate events is the

Mars-sun angle (the arc length on the sky between Mars and

the sun) at the time of the event. Because the orbit of Mars

lies outside the earth, and nearly in the plane of the ecliptic,

this parameter uniquely specifies the solar impact parameter

of the rays from both the radio source and the spacecraft.

The solar impact parameter (smallest distance between the sun

and the ray paths) determines to the first order the column

density of solar plasma traversed by these rays. Due to the sin-

gle frequency of the lander downlink, this plasma introduces
measurement errors. These errors are estimated as 5 nrad aver-

age (with a large scatter) for a Mars-sun angle of 15 degrees,



andnearly always less than 5 nrad for Mars-sun angles greater
than 40 degrees. 1 We will therefore discard candidate events

with Mars-sun angles less than 15 degrees and will give greater

weight in our data analysis to events with angles greater than
30 degrees. By avoiding all events with Mars-sun angles less

than 45 or 60 degrees the effects of solar plasma would be
negligible. However, this would eliminate measurements over

a substantial fraction of the Martian orbit, and reduce our
ability to distinguish systematic errors.

Although the ionosphere and solar plasma are expected to

cause the greatest transmission media effects, the troposphere
is also of concern. 1 For a 1 degree elevation difference, tro-

pospheric errors are estimated at 5 nrad if the source ele-

vation is 12 degrees or less at either antenna. The use of

spacecraft-radio source separations of 30 arc minutes or less

can greatly alleviate this problem. In addition, we should

attempt to schedule observations when the spacecraft and

radio source are at 15 degrees or higher elevation at both

antennas. Calibrations with water-vapor radiometers may be
able to reduce tropospheric errors by a factor of three.2

Subject to the restrictions of source structure effects (dis-

cussed above) and of transmission times (discussed below), all

sources in Tables 1 and 2 with sun-Mars angles greater than
15 degrees are suitable for frame-tie observations. The sources

in Tables 3-5 require additional screening. Intercontinental
VLBI observations of these sources are needed to determine if

their correlated flux densities at 1.7 GHz are greater than the

100 mJy requirement, and to determine the magnitude of
source structure problems.

Although the antennas will have steerable beams, the Soviets

want to minimize antenna movement. Therefore, the antennas

will probably have fixed orientations for periods of days or

weeks. Their beams will sweep across the earth once per orbi-

tal period of Phobos (7.65 hr). The gain will be variable during
this sweep, with the time between 3 dB points being 45 min-

utes if the earth passes through the center of the beam. In

addition, the landers will not always be broadcasting in VLBI

mode, but will be used for ranging and telemetry much of the
time. We do not yet have a schedule for transmissions from the
landers, and may not have such a schedule until after the land-

ings on Phobos. In combination with the limited mutual visi-

bility of radio sources on intercontinental baselines, these
lander broadcast restrictions will eliminate some candidate

•frame-tie events. It is important to select a surplus of candi-

date events, as a substantial fraction (perhaps 50 percent to
80 percent) will prove unusable.

2s. E. Robinson, R. N. Treuhaft, B. L. Gary, and C. J. Vegos, "Tropo-
spheric Wet Delay Calibrations for Magellan Navigation," IOM 335.3-
87-79 (internal document), Jet Propulsion Laboratory, Pasadena,
California, June 30, 1987.

One key quantity in any frame-tie measurement is the

lander-radio source separation. As shown in IOM 335.1-

87-29,1 the static troposphere and the ionospheric variations

can introduce errors greater than 5 nrad for elevation differ-

ences' between lander and radio source as small as 1 degree.

Because of the large longitude differences between the two

stations of DSN intercontinental baselines, the elevation

difference for at least one site will almost always be greater

than one-half the spacecraft-radio source separation. There-

fore, frame-tie measurements with spacecraft-radio source

separations less than 1 degree are strongly preferred, and
separations less than 30 arc minutes are desired.

The situation is more complicated than this, however. Unless

the lander-radio source separation is less than the primary
beam size of one antenna (10 min), the lander and radio source

cannot be observed simultaneously. One will move across the

sky due to sidereal motion (15 arc minutes per minute of

time) while the other is being observed. Depending on the

relative positions of the lander and radio source on the sky,
this motion may increase or decrease the elevation difference.

The observing sequence can be chosen to minimize the differ-

ence. Alternatively, a more complicated observing sequence

(lander/radio source/lander or radio source/lander/radio source)
can be used. This will allow a measurement of the linear

component in the spatial and time variation in the troposphere
and ionosphere.

In order to tie together two spherical coordinate systems,

three parameters are needed. These can be thought of as

resulting from the alignment of a reference point in the two
systems (2 parameters), and then performing a rotation about

this fixed point to align the remaining points (1 parameter).

Two spacecraft-radio source measurements suffice, in princi-
ple, to determine these 3 parameters. However, if the two

radio sources are close together (<20-30 degrees) or nearly

opposite (>150-160 degrees) on the sky, the third parameter

(rotation) is poorly determined. Two widely spaced measure-

ments are needed. In practice, it is desirable to have many
more than two measurements to reduce statistical measure-

ment error. More importantly, multiple measurements over as

much of the Martian trajectory as possible can allow an analy-
sis of systematic errors, such as source structure effects, iono-

spheric perturbations, or even irregularities in either the plane-
tary or radio reference frames.

V. Summary

Many candidate events for frame-tie measurements have

been found. In order to determine which events to use, the

following procedure will be adopted:



(1) Short-baseline VLBI observations will be performed on

those sources not previously observed interferometri-

cally. These observations will eliminate sources with

sizes greater than 200 nrad, and will reduce the posi-

tion errors of MIT-GB sources by a factor of about
100.

(2) Sources that have survived this sieving process will be
observed on intercontinental baselines at 1.7 or

2.3 GHz. This will determine the correlated flux

density, and will allow an estimate of the source struc-

ture effects on astrometry.

(3) Among sources close to the path of Mars, and which

have sufficient correlated flux density, additional

(4)

screening will be done. Sources with low or variable

visibilities (suggesting source structure problems) will

be eliminated. Preference will be given to sources with
the following properties: more than 200 mJy correla-

ted flux density, a Mars-sun angle greater than 30 de-

grees, a Mars-radio source separation of less than 30

arc minutes, and a source position that is already well
known from astrometric VLBI measurements. Ad-

ditionally, an attempt will be made to select events

which are uniformly spaced along the orbit of Mars.

Astrometri¢ VLBI observations of the selected sources

will be started. These observations will not be finished

when some of the actual frame-tie observations are

made, but will be needed" for the final data analysis.
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Table 1. Close pasees (<2 degrees) between Mars and the DSN Astrometdc Catalog,
3/15/89-5/1/92

Date UT Source

Sun- AngularClosest
Approach Planet Speed

Angle of Mars
(arc min) (deg) (arc min/hr)

1989

1989

1989

1989

1989

1989

1990

1990

1990

1990

1990

1990

1991

1991

1991

1991

1991

1991

1992

1992

1992

1992

Jun. 7 18:14 B2 0745+24

Jul. 3 04:58 OJ 287

Aug. 1 16:48 GC1004+14

Oct. 12 15:53 3C 279

Nov. 4 16:03 P 1352-104

Dec. 2 02:54 P 1504-167

Jan. 26 21:03 1748-253

Apr. 12 05:34 OX-173

Apr. 15 23:47 OX-192

Jun. 28 17:50 GC0119+04

Jul. 16 15:10 P 0201+113

Aug. 26 06:31 0341+158

May 17 02:38 B2 0745+24

Jun. 13 01:54 OJ 287

Jul. 13 15:32 GC1004+14

Sep. 24 09:43 3C 279

Oct. 17 06:26 P 1352-104

Nov. 13 08:28 P 1504-167

Jan. 6 19:09 1748-253

Mar. 19 17:27 OX-173

Mar. 23 08:24 OX-192

Apr. 23 04:47 P 2320-035

93 38 1.6

82 29 1.6

69 20 1.6

30 4 1.6

29 12 1.7

21 21 1.7

99 39 1.8

34 59 1.9

65 59 1.9

114 76 1.7

68 81 1.7

114 96 1.3

77 59 1.4

74 49 1.5

68 38 1.5

18 14 1.6

43 7 1.7

36 I 1.7

87 18 1.8

43 36 1.9

76 37 1.9

115 43 1.9



Table 2. Close passes (<1 degree) between Mars and the DSN Ecliptic Catalog, 3/15/89--5/1/92

Date UT Source

Sun- AngularClosest
Planet Speed

Approach
(arc min) Angle of Mars

(deg) (arc min/hr)

Correlated

Flux Density

at S-band (mJy)

1989 Mar. 20

1989 Mar. 25

1989 Apr. 28

1989 Apr. 30
1989 Jun. 14

1989 Jun. 29

1989 Sep. 19

1989 Sep. 20

1989 Sep. 26

1989 Oct. 2

1989 Nov. 5

1989 Nov. 22

1989 Nov. 24

1989 Nov. 25

1990 Apr. 6

1990 Apr. 20

1990 Apr. 26

1990 May 6

1990 Jun. 5

1990 Jun. 17

1990 Jul. 27

1990 Aug. 15

-1990 Sep. 21
1990 No_. 19

1990 Nov. 27

1991 Feb. 8

!1991 Feb. 17

1991 Mar. 8

1991 Apr. 4

1991 May 24

1991 Sep. 1

1991 Sep. 2

1991 Sep. 8

199_ Sep. 10

1_91 Sep. 13

1991 Oct. 18

19_1 Nov. 1

19_1 Nov. 3
1991 Nov. 6

1991 Nov. 6

1992 Mar. 14

1992 Mar. 27

19_2 Apr. 2
1992 Apr. 12

02:02 0409+22

10:42 0423+233

18:41 0556+238

18:16 0601+244

20:39 GC0802+21

05:35 GC0839+18

14:15 P 1158+007

21:02 P 1203+011

18:43 1216-010

03:39 P 1229-021

12:58 P 1354-107

10:16 P 1437-153

20:52 P 1443-162

14:01 P 1445-16

20:52 P 2126-15

17:56 P 2208-137

04:06 2223-114

09:41 2252-090

01:26 0013-00

06:53 P 0047+023

09:51 0229+13

19:16 CTA 21

20:11 P 0428+20

08:25 GC0423+23

23:36 0409+22

10:22 0409+22

03:06 GC0423+23

02:25 0459+252

22:39 0601+244

17:40 GC0802+21

07:19 P 1158+007

14:09 P 1203+011

12:28 1216-010

09:11 P 1218-02

21:35 P 1229-021

03:09 P 1354-107

18:42 P 1430-155

19:32 P 1437-153

05:16 P 1443-162

22:08 P 1445-16

13:29 P 2126-15

22:41 P 2208-137

04:30 2223-114

01:01 2252-090

34 66 1.5 210

23 64 1.5 170

55 51 1.5 240

19 51 1.5 100

30 35 1.6 240

54 30 1.6 420

17 3 1.6 140

34 3 1.6 110

11 1 1.6 150

12 1 1.6 120

21 12 1.7 90

20 18 1.7 110

47 19 1.7 330

28 19 1.7 (350,530)

30 57 1.9 130

41 61 1.9 (130,260)

13 62 1.9 (250,400)

3 64 1.9 (140,380)

5 71 1.8 (230,330)

30 74 1.8 (140,210)

34 84 1.6 (220,480)

9 91 1.4 122

7 109 0.9 130

41 168 0.9 170

26 178 0.9 210

25 106 0.9 210

32 101 1.0 170

21 90 1.2 240

51 76 1.3 100

44 56 1.5 240

8 21 1.6 140

43 21 1.6 110

1 19 1.6 150

59 19 1.6 120

22 18 1.6 120

34 7 1.7 90

52 2 1.7 (120,230)

5 1 1.7 110

33 1 1.7 330

14 1 1.7 (350,530)

23 35 1.9 130

55 38 1.9 (130,260)

3 39 1.9 (250,400)

24 41 1.9 (140,380)



Table 3. Close _ (<1 degree) 1omtweln Mars and VIA Catalog zmurces, 3116189-511/92

Date UT Source

Sun- AngularClosest
Planet Speed

Approach Angle of Mars
(arc rain)

(deg) (arc min/ltr)

Sub-arc-sec

Component
Flux Density

(mJy)

1989 Jul. 6 02:36 MG0900+1831

1989 Aug. 28 04:34 MG1109+0659

1989 Sep. IS 04:57 MGl150+0115

1989 Sep. 21 20:01 MG1208+0054

1989 Oct. 7 05:16 1242-047

1989 Nov. 24 20:45 1445-164

1990 Jan. 5 12:15 1646-224

1990 Jun. 7 07:17 0022+002

1990 Jul. 18 20:36 MG0211+1051

1991 Jun. 16 03:03 MG0900+1831

1991 Aug. 9 16:20 MGl109+0659

1991 Aug. 27 21:27 blG1150+0115

1991 Sep. 18 23:22 1242-047

1991 Nov. 1 18:31 1433-158

1991 Dec. 17 00:19 1646-224

15 28 1.6 110"

31 11 1.6 200*

40 5 1.6 130"

51 3 1.6 200*

56 3 1.6 34004:

47 19 1.7 510t"

2 32 1.8 1900 #

4 71 1.8 2700t

9 82 1.7 200*

8 48 1.5 110"

35 29 1.6 200*

32 23 1.6 130"

45 16 1.6 34004:

52 2 1.7 400t

12 12 1.8 19004:

*Flux density in sub-arc-second component at 5 GHz.

tFlux density in sub-arc-second component at 1.7 GHz.
4:Flux density at 1.7 GHz, but not all in a compact component.
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Table 4. Close passes (<30 arc min) between Mars and MIT-GB Catalog, 3115189-511192

Date UT Source

Sun- Angular
Closest Total

Planet Speed
Approach Flux Density

(arc rain) Angle of Mars
(deg) at 5 GHz (mJy) (arc min/hr)

1989 Jul. 9 17:33 MG0909+1751" t5 27 164 1.6

1989 Jul. 11 12:56 MG0914+1715" 1 26 458 1.6

1989 Jul. 12 16:55 MG0917+1717" 15 26 159 1.6

1989 Jul. 24 08:50 MG0945+1428" 14 22 237 1.6

1989 Jul. 26 03:57 MG0950+1419" 1 22 1451 1.6

1989 Jul. 26 16:38 MG0950+1344 29 21 163 1.6

1989 Aug. 2 05:48 MG1007+1248" 4 19 417 1.6

1989 Aug. 3 14:15 MG1010+1235" 9 19 164 1.6

1989 Aug. 5 10:30 MG1015+1227 28 18 292 1.6

1989 Aug. 14 11:47 MG1036+0956" 2 15 470 1.6

1989 Aug. 25 21:51 MGl104+0730 27 12 231 1.6

1989 Sep. 3 17:48 MGl124+0456" 5 9 393 1.6

1989 Sep. 7 20:38 MGl134+0358" 12 7 151 1.6

1989 Sep. 11 10:10 MG1142+0235" 17 6 172 1.6

1989 Sep. 24 10:22 MG1213-0013" 21 2 225 1.6

1990 Jun. 11 15:56 MG0034+0118" 13 72 208 1.8

1990 Jun. 21 12:08 MG0100+0417" 4 74 163 1.8

1990 Jun. 30 21:56 MG0125+0617" 26 77 206 1.7

1990 Jul. 3 04:30 MG0131+0703" 15 78 206 1.7

1990 Jul. 5 04:13 MG0135+0810" 26 78 704 1.7

1990 Jul. 10 09:04 MG0148+0927" 26 79 150 1.7

1990 Jul. 21 00:36 MG0217+1103" 27 82 480 1.6

1990 Jul. 22 11:42 MG0220+1121" 29 83 481 1.6

1990 Jul. 28 17:37 MG0235+1304 2 85 225 1.6

1990 Aug. 1 03:21 MG0244+1320 27 86 259 1.6

1990 Aug. 26 04:41 MG0342+1736" 14 95 162 1.3

1990 Aug. 28 17:40 MG0347+1749" 20 97 285 1.3

1990 Sep. 2 06:17 MG0356+1900" 19 99 371 1.2

1990 Sep. 5 04:49 MG0402+1929" 29 100 348 1.2

1991 Jun. 19 21:46 MG0909+1751" 9 46 164 1.5

1991 Jun. 21 19:00 MG0914+1715" 7 46 458 1.5

1991 Jun. 23 00:02 MG0917+1717" 10 45 159 1.5

1991 Jul. 5 02:02 MG0945+1428" 17 41 237 1.5

1991 Jul. 6 22:26 MG0950+1419" 1 40 1451 1.5

1991 Jul. 14 05:08 MG1007+1248" 4 38 417 1.5

1991 Jul. 15 14:25 MG1010+1235" 9 37 164 1.5

1991 Jul. 17 11:43 MG1015+1227 28 37 292 1.5

1991 Jul. 26 18:01 MG1036+0956" 4 34 470 1.6

1991 Aug. 16 07:39 MG1124+0456" 11 27 393 1.6

1991 Aug. 20 11:31 MGl134+0358" 19 26 151 1.6

1991 Aug. 24 01:54 MGl142+0235" 10 24 172 1.6

*VLA observations made after this article was submitted have shown that these sources have inadequate compact flux density for &VLBI

observations.
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Table 5. Close passes (30-59 arc rain) between Mars and MIT-GB Catalog, 3/15189-511/92

Date UT Source

Sun- AngularClosest Total
Approach Planet Flux Density Speed

Angle of Mars
(are rain) at 5 GHz (mJy)

(deg) (arc min/hr)

1989 Jul, 5 01:48 MG0856+1739" 50 28 150 1.6

1989 Jul. 9 11:38 MG0909+1821" 44 27 306 1.6

1989 Jul, 10 13:42 MG0910+1650" 39 27 158 1.6

1989 Jul. 15 22:30 MG0925+1658 35 25 191 1.6

1989 Jul. 30 01:18 MG1000+1401" 36 20 514 1.6

1989 Jul. 31 22:09 MG1002+1215 50 20 284 1.6

1989 Aug. 1 12:19 MG1004+1207 51 20 167 1.6

1989 Aug. 8 02:01 MG1020+1039" 48 17 166 1.6

1989 Aug. 12 18:30 MG1034+1112" 58 16 464 1.6

1989 Aug. 13 17:43 MG1036+1052 52 16 201 1.6

1989 Aug. 19 16:33 MG1050+0926" 52 14 153 1.6

1989 Aug. 28 22:00 MG1109+0543 39 11 184 1.6

1989 Sep. 6 08:15 MG1131+0456" 50 8 205 1.6

1989 Sep. 12 03:42 MGl142+0154" 50 6 218 1.6

1989 Sep. 21 03:09 MG1204-0029" 53 3 184 1.6

1990 Jun. 18 13:08 MG0051+0358" 36 74 234 1.8

1990 Jun, 23 04:42 MG0103+0521 43 75 183 1,8

1990 Jul. 2 22:22 MG0131+0623" 53 77 545 1.7

1990 Jul. 17 06:38 MG0205+1134" 59 81 186 1.7

1990 Jul. 20 04:47 MG0213+1212 57 82 180 1.6

1990 Jul. 24 07:57 MG0225+1134 40 83 387 1.6

1990 Jul. 30 19:12 MG0241+1253" 39 86 189 1.6

1990 Jul. 30 20:40 MG0242+1248 45 86 161 1.6

1990 Aug. 11 06:24 MG0307+1609" 36 89 170 1.5

1990 Aug. 13 12:09 MG0314+1508" 51 90 187 1.5

1990 Aug. 23 20:51 MG0338+1634" 58 94 166 1.3

1990 Aug. 31 00:16 MG0352+1754 32 98 248 1.3

1990 Sep. 10 06:15 MG0412+1856 36 103 248 1.1

1991 Jun. 15 01:27 MG0856+1739" 58 48 150 1.5

1991 Jun. 19 15:27 MG0909+1821" 38 46 306 1.5

1991 Jun. 20 19:00' MG0910+1650" 45 46 158 1.5

1991 Jun. 23 18:22 MG0920+1753 56 45 353 1.5

1991 Jun. 26 08:31 MG0925+1658 30 44 191 1.5

1991 Jul. 7 11:38 MG0950+1344 31 40 163 1.5

1991 Jul. 10 22:24 MG1000+1401" 35 39 514 1.5

1991 Jul. 12 20:50 MG1002+1215 51 38 284 1.5

1991 Jul. 13 11:24 MG1004+1207 52 38 167 1.5

1991 Jul. 20 05:03 MG1020+1039' 47 36 166 1.5

1991 Jul. 25 23:24 biG1036+1052 54 34 201 1.5

1991 Aug. 1 01:00 MG1050+0926" 55 32 153 1.6

1991 Aug. 7 08:51 MGl104+0730 31 30 231 1.6

1991 Aug. 9 15:43 MGl107+0533" 59 29 285 1.6

1991 Aug. 10 10:13 MGl109+0543 35 29 184 1.6

1991 Aug. 15 00:23 MGl119+0410 59 27 235 1.6

1991 Aug. 18 22:39 MGl131+0456" 56 26 205 1.6

1991 Aug. 24 19:40 MGl142+0154" 42 24 218 1.6

1991 Sep. 1 01:29 MG1159-0015' 59 22 225 1.6

1991 Sep. 2 20:30 MG1204-0029" 44 21 184 1.6

1991 Sep. 6 03:53 MG1213-0013" 31 20 225 1.6

*VLA observations made after this article was submitted have shown that these sources have inadequate compact flux density for AVLBI
observations.

12



TDA Progress Report 42-92

N88-18776
7G

October--December1987

The JPL Trapped Mercury Ion Frequency Standard

J. D. Prestage, G. J. Dick, and L. Maleki

Communications Systems Research Section

In order to provide frequency standards for the DSN which are more stable than present-

day hydrogen masers, a research task was established under the Advanced Systems Pro-
gram of the TDA to develop a 199Hg_ trapped ion frequency standard. This article de-
scribes the first closed-loop operation of this standard.

Mercury 199 ions are confined in an RF trap and are state-selected through the use of

optical pumping with 194-nm UV light from a 2°2Hg discharge lamp. Absorption of
microwave radiation at the hyperfine frequency (40.5 GHz) is signaled by atomic fluo-
rescence of the UV light. The frequency of a 40.5-GHz oscillator is locked to a ].6-Hz-

wide atomic absorption line of the trapped ions. The measured Allan variance of this

locked oscillator is currently ay(r) = 4.4 × ]O-12/x/T for 20 < _ < 320 seconds, which is
better stability than the best commercial cesium standards by almost a factor of 2. This ini-

tial result was achieved without magnetic shieMing and without regulation of ion number.

I. Introduction

Recently, there has been much activity directed toward the

development of trapped ion frequency standards. This has

occurred because ions confined in an RF quadrupole trap are

subjected to v.ery small perturbations of their atomic energy

levels and to weak forces which equalize any population dif-
ferences among the ground-state hyperfine levels. Potentially,

the largest source of frequency fluctuation for such a standard

stems from the motion of the atoms within the trap via the
second-order doppler or relativistic time dilation effect. To

minimize this perturbation, heavy ions are preferable to light
ions, since for a given energy a heavy ion will have a smaller

velocity. For this reason and for other reasons discussed later

in this article, 199Hg+ ions have been used for most trapped
ion frequency standard work.

Only two parameters are needed to describe the short-term

stability of a passive atomic frequency standard. One is the

line Q, which equals f/_f where fis the resonant frequency of
the reference atom and Af is the width of the atomic reso-

nance. For 199Hg+, fis 40.5 GHz and Afis as small as 0.1 Hz;
thus, trapped ion standards have line Q's which are orders of

magnitude higher than other microwave atomic frequency
standards.

The other parameter that determines stability is the signal-

to-noise ratio (SNR) achieved in measuring the atomic reso-

nance. The short-term stability is inversely proportional to the

product of Q and SNR. At present, four groups are developing

trapped Hg + ion clocks: Hewlett-Packard in Palo Alto, Cali-

fornia [1]; the National Bureau of Standards in Boulder,

Coloracto [2] ; l'Universite Paris-Sud in Orsay, France [3] ; and

JPL/NASA. It should be noted that F. G. Major first proposed

the use of trapped 199Hg+ ions as a frequency standard while

working for NASA at the Goddard Space Flight Center in
1969 [4].
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II. Ion Trapping

The electrode structure and time-varying voltages used to

trap ions are shown in Fig. 1. The electric potential inside the

trap when no ions are present is

and

2 m

¢,_0z

8e 2 I:2o 4eU o

m2_22_ 4 m_ 2

V T =

(U 0 + V 0 cos [2t) (r 2 - 2z 2)

_2

where, for the present work, I2 = (21r) 500 kHz, Uo = 20 V,
Vo = 660 V, _z = (ro2+ 2z_), and r0 = the inside radius of ring

electrode = 1.9 cm = x/_'z o.

A charged particle moving in the inhomogeneous oscillatory

electric field of the ion trap feels a net force (averaged over

one cycle of _2) toward the region of the weaker field provided

that the amplitude of its motion at frequency _2 is small com-

pared with its distance from the center of the trap. The motion
under these conditions is a combination of a fast oscillation

at frequency I2 (micromotion) and a slower frequency co, as
shown in Fig. 2.

The action of the RF field in trapping ions is described by

the electric pseudopotential energy [5]:

e 2 V2 (r 2 + 4z 2)
_=

rnfZ2_ 4

where m and e are the ion's mass and charge, respectively. The

dc potential energy

eU o (r 2 _ 2z 2)

edc = _2

is added to the pseudopotential, giving the total potential

energy for an ion in the trap:

me0 2 r 2 me0 2 z 2
r

4_r- 2 + 2

where

2e 2 Vg 2eU o
tO 2 =

rn_2

Under the conditions listed earlier, ---19 electron volts of

kinetic energy is required for a 199Hg+ ion at the trap center

to reach one of the trapping electrodes.

Our trap is inside a vacuum chamber with a pressure of

---1-2 × 10-8 torr. By heating a powder of isotopically en-
riched mercuric oxide (HgO) to about 100°C, a vapor of

neutral 199Hg fills the vacuum chamber to about 10 -s torr

partial pressure. Electrons from an LaB 6 single-crystal fila-
ment are injected into the trap (---30 btA, 300 V), ionizing

some of the neutral 199Hg inside the trap electrode structure.

The resulting ion cloud is much hotter than the room-

temperature neutral vapor in part because ionization of the

vapor takes place throughout the trap. It has been found
experimentally that the average kinetic energy of the ions is

about 10 percent of the well depth. The resulting 2 eV of

kinetic energy would produce a fractional second-order dop-

pler shift of about 10 -11 . To reduce this shift, the vacuum

system is filled to about 10 -6 torr of '*He. The 199Hg+ ions

collide with these room-temperature helium atoms and are

cooled to just above room temperature.

III. Magnetic Levels and State Selection

The magnetic structure of the ground-state hyperfine levels
of 199Hg+ is shown in Fig. 3. The energy difference between

the (F = 0, m F = 0) and (F = 1, m F = 0) levels is used to define

the standard frequency, approximately fHg+ = 40.507347997
GHz. The measured frequency,f, depends quadratically on the

magnetic field at the position of the ion cloud, f = fHg+ + 97B2
(Hz/G 2). For comparison, the field dependence for hydrogen

atoms isf=f H + 2750B 2 (Hz/G2).

The ions are state selected by use of optical pumping with

light from a 2°2Hg discharge lamp. The energy levels of 2°2Hg÷

and 199Hg+ are compared in Fig. 4. Ultraviolet light of wave-

length 194.2 nm (26.4 eV) from the 2°2Hg lamp, when col-

lected and focused onto the 199Hg+ ions, will excite the tran-

sition 2S1/_ (F = 1, m_.) _ 2P1/2 .

The 2P1/2 state decays after 2 ns lifetime to either the

2S1/2 (F = O, m F = 0) or the 2S1/2 (F = 1, mF) state, thereby

scattering a 194-nm photon. Since the transition 2S1/2 (F = O,

m F = O) _ 2PI/2 is not resonant with the light from the

2°2Hg lamp, the ions are pumped out of the 2S1/2 (F = 1,

mF) states into _he 2S1/2 (F = O, m F = 0) state, at which time
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the ions stop scattering UV light. A flux of about 3 × 1012

photons per second per square centimeter passing through the

ion cloud will depopulate the 2S1/2 (F = 1, mF) levels in about
1/2 second. An oscillating magnetic field (strength 10 -6 G)at

a frequency of 40.507347997 GHz will transfer the atoms

from the 2S1/2 (F =0, mF =0) state to the 2S1/2 (F =1,
m F = 0) state in about 1 second. The ions will then scatter UV
light until they are pumped back into the nonfluorescing

2Sll: (F = 0, m F = 0) state.

IV. UV Optical System

Figure 5 shows the optical system used to collect and focus

UV light from the 2°2Hg lamp onto the ion cloud. The lamp is

excited with 15-20 watts of RF power (160 MHz), creating a

very bright discharge in the quartz cell containing the 2°2Hg

vapor with about 30 millitorr of argon buffer gas. The useful
light from the 2°2Hg lamp is from the 194.2-nm transition in

2°2Hg+, as shown in Fig. 4.

However, the brightest wavelengths produced in the lamp

are from transitions in the neutral mercury atom. Any light

detected at wavelengths other than 194 nm will degrade the
SNR of the measured atomic resonance. There are three ways

we suppress the detection of light with wavelengths different
from 194 nm:

(I) The photomultiplier tube (PMT) is sensitive only to

light that has wavelengths between 160 and 320 nm
with peak sensitivities of 12 to 15 percent at 210 nm.

The brightest line coming from the lamp in this band-
width is 254 nm and is 200 times brighter than the
194-nm line.

(2) The ellipsoidal collection mirror has a thin-film dielec-
tric coating which maximizes reflection at 194 nm

while keeping the reflectivity at 254 nm at 10 percent,
with lower reflectivities for longer wavelengths. The

entrance window to the trap region is coated to be

98 percent reflective at 254 nm while being 90 percent
transmitting at 194 nm.

(3) All light collected by the detection optics-stray scat-
tered light plus fluorescent light from the atoms-is

filtered with a 194-nm bandpass filter with a peak

transmission of 30 to 40 percent and a bandwidth of

45 rim. The solid angle subtended by the collection

optics around the trap center is 5 percent of the total

47r solid angle. The total collection efficiency of this

detection system is equal to the solid angle multiplied

by the bandpass filter loss multiplied by the PMT sen-

sitivity, or 0.05 × 0.35 × 0.12 = 2 × 10-3.

The atomic fluorescence and stray scattered light can be

seen in Fig. 6. The scan is triggered by the start of the elec-

tron pulse, which forms the ions and causes some increase in

detected light. After about 1 second the electron pulse is

switched off, the ions are pumped into the 2S1/2 (F = 0,

m F = 0) level, and only stray light is collected. At 2 seconds,
the 40.5-GHz radiation is switched on, transferring some of

the atoms into the 2S1/2 (F = 1, m F = 0) state, where they
scatter light as discussed earlier. Finally, at about 3 seconds,
the microwaves are switched off and the atomic fluorescence

dies away with a time constant of about 1/5 second.

V. Closed-Loop Operation

The sequence of operations used to carry out a measure-

ment of the 2S1/2 (F=O, m F =0) _ 2S1/2 (F = 1, m t = O)
frequency is shown in Fig. 7. By repeating this sequence as the

frequency of the microwaves is stepped in 0.2-Hz increments,
we measure the resonance curve shown in Fig. 8. For the

0.5-second square microwave pulse used in this measurement,

the smallest linewidth theoretically attainable is 1.6 Hz, which

corresponds to Q = 2.5 X 10 l°.

Locking the 40.5-GHz oscillator to the 1.6-Hz-wide reso-

nance line is done by stepping the oscillator 0.8 Hz to either

side of the resonance and adjusting the center frequency of
this -+0.8-Hz step to null the difference in fluorescence rates.

More precisely, suppose the center frequency of the 40.5-GHz

oscillator, Ft, is within one linewidth of the resonance. Three
measurements of the fluorescence are made on alternate sides of

Ft: C1 at F i + 0.8 Hz, C2 at F i - 0.8 Hz, and C3 at F i + 0.8 Hz.
The oscillator center frequency is then changed to

=F.+
Fi+l t

(0.8 Hz/T) (C1 + C3 - 2C2)

2(SIGNAL)

where SIGNAL is the height of the fluorescence above back-

ground and T is the loop time constant in units of measure-

ment cycle time. The "second difference" (C1 + C3-2C2)

is used because it is insensitive to linear drifts in lamp inten-

sity. If the first difference (C1 - C2) had been used to change

Fi, a linear drift in lamp intensity would have forced a linear
drift in the 40.5-GHz oscillator's frequency away from the

atomic line center. The sequence of center frequencies obtained

in this closed-loop operation is shown in Fig. 9. The measure-

ment shown lasted just over 2 hours. A single measurement

cycle-consisting of an electron pulse to load ions in the trap,
a waiting period while ions are optically pumped, lamp off while

microwaves drive the transition, and lamp on and counter on to

monitor fluorescence-lasts about 2.5 seconds. The loop time

constant, T, is 5 measurement cycles, i.e., about 12.5 seconds.
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The Allan variance derived from the sequence of frequen-

cies (F i) is shown in Fig. 10. The reference frequency for the
40.5-GHz oscillator is provided by a hydrogen maser (SAO-21

in the Frequency Standards Laboratory). For times that are

long compared to the loop time constant, the Allan variance
falls as 4.4 × 10-12/x/_ -. This short-term stability is nearly a
factor of 2 better than that of the best commercial cesium

standards (8.5 × 10-12/x/_). These initial results were obtained

without shielding the 0.8 G ambient magnetic field in the trap.
The residual field dependence at 0.8 G is 157 Hz/G. A fre-

quency stability of 2 × 10 -13 at this field sensitivity requires

magnetic field fluctuations smaller than 60 /aG over the
320 seconds required to reduce statistical error to 2 × 10-13.

For this reason, we have not pushed the Allan variance data

beyond 320 seconds in this first test.

Vl. Conclusion and Summary

In its first closed-loop operation, the frequency stability of

the trapped 199Hg+ frequency standard has been measured to
be

4.4 X 10-12

°r(r) -

for 20 < _"< 320 seconds.

Many improvements are under way to increase the short-

and long-term stability of this standard, including increased

fluorescence collection efficiency, shielding the ambient mag-

netic field, and designs for traps which could store one hun-

dred times the present ion number.
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A pointing error model is used in the antenna calibration process. Data from space-
craft or radio star observations are used to determine the parameters in the model. How-

ever, the regression variables are not truly independent, displaying a condition known as

multicollinearity. Ridge regression, a biased estimation technique, is used to combat the

multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking

(days 105 and 106 of 2987) were analyzed using both linear least squares and ridge

regression methods. The advantages and limitations of employing the technique are pre-

sented. The problem is not yet fully resolved.

I. Introduction

A pointing error model is used in the antenna calibration

process to compensate for systematic error sources. Data from

spacecraft (s/c) or radio star observations are used to deter-

mine the parameters in the model. The model parameters are

then used to generate a systematic error correction table for

accurately pointing the antenna. The pointing error modeling

approach used was originally devised by optical astronomers

and subsequently adapted by radio astronomers for RF anten-

nas. The model is based on logical, expected physical behavior

of the antenna and has been successfully applied to many

radio astronomy facilities: the Bonn 100-m Az-E1 antenna

[1] and the Haystack 37-m Az-E1 antenna [2]. The complete

pointing error model for an antenna is a sum of individual
error functions. Table 1 shows the individual error sources and

the elevation and cross-elevation (or, depending on the antenna

mount, declination and cross-declination) error functions used
to develop a systematic error correction table ([1], [2] and [3]

give a more in-depth description of the parameters).

When modeling a system, one may select the model purpose

to fall into one of three main categories: explanation, variable

selection, or prediction. If the model is explanatory, then it

represents the y in terms of the x's and explains how the x's

affect the y. Variable selection techniques should be used

when the goal is to determine which variables from a group of

variables are important in determining the optimal model for

y. This selection of variables could provide the best fit, the

simplest form of the model, or both. Prediction, or forecast-

ing, techniques estimate the output,y, at previously unobserved

values of inputs, x.

The current pointing error model used in the DSN is of the

explanatory type, and the parameters P are determined by per-

forming a linear least squares fit on offset data collected from

s/c or radio star observations. Currently, the regressor variables

are not truly independent and, rather, display redundant infor-

mation-a condition known as multicollinearity [4]. Multi-

collinearity results in limitations on the ability of an ordinary
linear least squares fit to provide stable and accurate variables.
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It is therefore desirable to study alternate techniques for

parameter estimation. Ridge regression is a biased estimation

technique for combating the multicollinearity problem. This

article reviews the use of the ridge regression technique and

demonstrates the advantages and limitations of its uses for

systematic error correction development.

II. Review of Regression Analysis

Suppose that, in an experiment, values of the dependent

variable y are observed, each corresponding to a particular

value of an independent variable x. A straight line representa-
tion of the y = y(x) data would have the form

Y = #o + #1x + e (1)

where e is the model error. Equation (1) is a simple linear
regression model since it contains a single regressor variable,

x, and is linear in x.

The above linear regression of y upon a single variable x
can be extended to the multiple linear regression model

Yi = [Jo + _lXli + [J2x2i +"" + _kXki + ei (2)

where i = l, 2 ..... n (n _ k + 1), ei is a conceptual random
model error assumed to be uncorrelated for each observation

(having a zero mean and a constant variance o2), x_i are the

independent variables (or regressors), Yi are the dependent
variables (or response variables) and are the true responses,

and/_k are the unknown regression parameters. One equation
can be written for each observation, and the error term e

allows the model to be an equality. In matrix terms, Eq. (2)
becomes

y = t_x + e (3)

Since the regression terms/_ are unknown, let the least

squares estimator for these coefficients be b k. These estimators
should satisfy the following equation:

_i = b o + blXil +... + bkxik (4)

where _i are the model's estimated (or fitted) value to Yi of

Eq. (2). Since Eq. (4) contains only known terms, it does not

contain the conceptual terms er

If the initial model was accurate, then the difference be-

tween Yi and _i should be small. The difference or residual,

r i, between the actual values and the fitted values is

,, = y,-._, (s)

The method of least squares chooses bik values so that

2
rt

i= 1

is minimized. The estimates satisfy the following matrix equa-
tion [4], [5]:

_b = (X'X) -1 X_y (6)

where X' is the transpose of X. When the regressor variables

are centered (made dimensionless relative to a mean value),
X'X is then in correlation form and will be written as X*'X*.

III. Multicollinearity

Multicollinearity exists when the regressor variables are

empirically correlated, affecting the computation of _b, which
involves the X'X matrix. When this situation exists, no conclu-
sions can be drawn as to the individual roles of the variables.

If multicoUinearity is "severe," then the coefficients may

(1) be the wrong size (too large in magnitude); (2) have the
wrong sign; or (3) be unstable due to ill-conditioned matrix

computations (i.e., small changes in the y's or x's lead to large
changes in the coefficients). Multicollinearity will also inhibit

the ability to predict.

Diagnostics can be performed to evaluate the extent of the

multicollinearity problem. Large values in the correlation

matrix are one indication of multicollinearity, but this obser-
vation only shows pairwise correlations, not correlations that

exist between more than two variables. Variance Inflation

Factors (VIFs) are another means of identifying multicollin-
earity. VIFs are the diagonal elements of the inverse of the

correlation matrix and represent the inflation that each regres-

sion coefficient experiences above the ideal (identity matrix).
VIFs are considerably more useful for multicollinearity detec-

tion than simple correlation values because they give a direct

measure of multicoUinearity and tell the user which coeffi-

dents are adversely affected and to what extent. As a rule of

thumb, VIFs greater than 10 indicate that a severe multicol-

linearity problem exists. Table 2 gives a sample analysis of a

set of conical scanning (conscan) offset data (collected during

a Voyager 1 track on the 105th day of 1987) that exhibits a

multicollinearity problem. Correlation values of zero mean no
correlation and +1.0 means full correlation. The VIF data

from Table 2 indicates a severe multicoUinearity problem.
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IV. Ridge Regression

Ordinary least squares methods give unbiased estimates and
have the minimum variance of all linear unbiased estimators•

However, there is no upper bound on what the variance could

be, and the presence of multicollinearity could produce large

variances. Ridge regression is a biased estimation technique
used to attain a substantial reduction in variance with an in-

crease in the stability of the coefficients. If the correlation

matrix is reduced, then the variance

vary) = o2 (X'X) -1 (7)

is improved and the stability of the coefficients is increased.

Ridge regression uses this idea.

Variables x andy in Eq. (2)must first be standardized (cen-

tered), making them dimensionless relative to an average value

x.*. x° - _j= (8)

• Yi -y
Y0 = n (9)

where i is the number of points (i = 1, 2, . . . , n) andj is the

number of parameters (,/= 1,2,..., k). The new standardized
model becomes

y* = X*3* + e (10)

and the solution for the least squares estimate b_Ls is

_b_s = (x*'x*) -1 x*_y* (11)

where X*'X* is the correlation matrix, as stated previously.

The ideal correlation matrix is the identity matrix, I. If

multicollinearity exists, high correlation values exist so the

diagonal elements do not dominate and there are large off-

diagonal values. To make the correlation matrix values ap-

proach the identity matrix, the ridge estimator is introduced:

b_ = (X*'X* + kl) -1 X*_y (12)

where I is the identity matrix and k is a value greater than or

equal to zero and is chosen by the user. The term kl adds a

positive constant to the diagonal elements of the correlation

matrix in order to make the diagonal elements dominate.
Accordingly, the inverse (X*'X* + kl)- l will have smaller ele-

ments, alleviating past difficulties created by having large
elements on the diagonals of the inverse, like large variances.

The term k is often referred to as a "shrinkage parameter"

since it "shrinks" the effects of the off-diagonal elements. The

ridge estimator _b_ equals the least squares estimatorb_s

when k = 0. It can also be easily converted back to_b R (dimen-
sioned) by a simple transformation.

Ridge regression is called a biased estimation technique

since the ridge estimators b__ are biased. Proper selection of
the shrinkage parameter minimizes the negative effect of large
bias while maintaining a ridge estimator variance that is signif-

icantly less than the least squares estimator. As the shrinkage

parameter increases, the bias of the ridge estimator increases
and its variance decreases.

A subjective method exists for choosing the shrinkage

parameter: the ridge trace. Many different values ofk are used

to compute _b_ (k), and then each _b}_ (k) is plotted versus k.
The more unstable the variable is, the faster it drops off and

stabilizes. Gradual changes of the variables over k denote sta-

bility. The shrinkage parameter k is chosen so that the esti-
mates are stable. As a rule, the smallest value of k where sta-

bility of the coefficients first appears is selected [4], [6].

V. Two Case Studies

Two applications of the ridge regression technique on the

systematic error correction model were done using Voyager 1

conical scanning (conscan) offset data. The results were com-

pared to fits obtained using an ordinary linear least squares

method. The selected parameters for the linear least squares fit

were (refer to Table 1) P1, PT, Pa, P1 _, Pl a, P14, and Pl 6. The

parameters selected for the ridge regression cases were Pa, P12,
Pin, P14, and PI6" Parameters P1 and P7 represent constant

cross-elevation and elevation offsets, respectively. In the ridge
regression process, these two terms were created by determin-

ing the cross-elevation and elevation offset biases.

The first data set uses conscan offset data collected on the

105th day of 1987. As demonstrated in Table 2, this data

exhibits a high degree of multicollinearity and would probably

benefit from the use of ridge regression. Parameters deter-

mined using the linear least squares method are listed in col-

umn 1 of Table 3. These parameters exhibit the characteris-

tics associated with multicollinearity, one of them consisting

of coefficients that are too large in magnitude (they are too

large to be realistic or practical). Shrinkage parameters were

selected in 0.005 increments and ranged from 0 to 0.10. Fig-
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ure 1 shows the use of the ridge trace for the "best" subjective

selection of ridge estimators. Stability seems to be reached at

approximately k = 0.02. The parameters for this shrinkage
parameter are listed in column 2 of Table 3. The coefficients

have diminished in value, approaching a more realistic repre-

sentation. Figure 2 compares the residual fit errors obtained in

both the linear least squares method and ridge regression. The
residual errors are defined in Eq. (5) as the difference between

the actual and the fitted pointing offsets. The signatures for

both sets of residual errors are similar, indicating incomplete-

ness in the model itself, but the average residual offset for the

ridge regression case is nearly zero, and the standard deviations

are similar (approximately 0.9 mdeg).

The above example demonstrated how ridge regression can

be used to obtain more realistic parameters and fewer overall

fitting errors (average error approaching zero). Multicollinear-

ity also causes the parameters to be unstable. Conscan offset

data collected from Voyager 1 tracks on the 105th and 106th

days should yield similar results. No changes were made to any

part of the antenna mechaniaal subsystem between these two

consecutive tracking sessions (for example, the same a priori

systematic error correction table and autocollimators were

employed in both cases), yet the parameters determined using

the linear least squares fitting method (listed in columns 1 and
3 of Table 3) seem to indicate otherwise. The parameters not

only differ in sign, but also differ radically in magnitude.

Parameters determined using ridge regression (columns 2 and

4 of Table 3) are in closer agreement in both magnitude (off

by a small factor-3 or 4-rather than 10 or 20) and sign, and

also yield similar overall fits (same average and standard

deviation).

VI. Conclusion

The ridge regression technique was shown to be useful in

minimizing the effects of multicollinearity. For the two exam-

pies given, it generated stable coefficients for similar sets of

data, provided coefficients that were more realistic in magni-

tude, and gave an overall fit with average residual errors near

zero. Although these are good results in terms of coefficient

characteristics, the overall fitting results using ridge regression

were no better than the linear least squares results since the

signatures resulting from the two methods exhibited analogous

trends. A technique such as variable selection or prediction

may be needed in order to get a more optimal model and a

better parameter selection procedure. In any case, the prob-
lem of multicollinearity must still be addressed and resolved.
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Table 1. Systematic pointing error sources and model terms

Error source Model function

Cross-elevation error Elevation error

Az collimation P1 -

Az encoder fixed offset P2 cos (el) -

Az/el skew P3 sin (el) -

Az axis tilt P4 sin (el) cos (az) -P4 sin (az)

Az axis tilt Ps sin (el) sin (az) Ps cos (az)

E1 encoder fixed offset - P7

Gravitational flexure - P8 cos (el)

Residual refraction - P9 :cot (el)

Az encoder scale error P10 (az/360) cos (el) -

Cross-declination error Declination error

HA/dec axis skew -P11 sin (dec) -

HA axis tilt P12 sin (HA) sin (dec) PI2 cos (HA)

HA axis tilt -P13 cos (HA) sin (dec) PI3 sin (HA)

HA feed offset -PI4 -

Gravitational flexure PI 5 cos (p) cos (el) -P1S sin (p) cos (el)

Declination feed offset - P_t 6

Gravitational flexure PIT sin (p) cos (el) -

Gravitational flexure - -PI 8 cos (t9) cos (el)

Gravitational flexure -P19 sin (el) -

Gravitational flexure - P2o sin (el)

HA encoder bias P21 cos (dec) -

Note: (1) Uppercase P refers to parameter value; lowercase p refers to paralectic angle.

(2) Az = azimuth angle; el = elevation angle; dec = declination angle; HA = hour angle.
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Table 2. Sample correlation matrix and variance inflation factors (for Voyager 1 conscan
offset data from 105th day of 1987)

Correlation matrix VIF

Variable 8 12 13 14 16

8 1.0000 0.8653 -0.9911 -0.9954 0.9937 747.6

12 0.8653 1.0000 -0.8624 -0.8690 0.8994 103.9

13 -0.9911 -0.8624 1.0000 0.9981 -0.9959 2783.1

14 -0.9954 -0.8690 0.9981 1.0000 -0.9966 929.0

16 0.9937 0.8994 -0.9959 -0.9966 1.0000 4377.6

Table 3. Model parameters for two Voyager 1 conscan offset data sets (105th and 106th days of
1987) using linear least squares and ridge regression (units are in millidegrees)

Day 105 Day 106

Parameter Linear Linear
(P) least Ridge least Ridge

regression regression
squares squares
(1) (2) (3) (4)

1 --451.93 24.08* -0.55 18.68"

7 -141.18 29.58* 17.86 17.13"

8 -271.78 -13.45 -27.22 -29.11

12 -114.05 4.28 1.40 1.34

13 240.03 -4.10 -0.65 -17.24

14 -557.56 4.85 6.19 15.26

16 103.29 0.25 0.49 0.89

*Ridge regression parameters P1 and P7 are created by determining the cross-elevation and elevation
biases.
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This article presents a new approach to the design of the planned NASA/JPL 34-m

elevation-over-azimuth (Az-EI} antenna structure at the Venus site (DSS-13). The new

antenna structural configuration accommodates a large (2.44-m) beam waveguide (BWG)

tube centrally routed through the reflector-alidade structure, a unique elevation wheel
design, and an optimal structural geometry. The new design encompasses a "Cross-Box"

elevation wheel-reflector base substructure that preserves homology while satisfying

many constraints, such as structure weight, surface tolerance, stresses, natural frequency,

and various functional constraints. The functional requirements are set to ensure that

microwave performance at millimeter wavelengths is adequate.

The new Cross-Box configuration was modeled, optimized, and found to satisfy all

DSN HEF baseline antenna specifications. In addition, the new structure design was

conceptualized and analyzed with an emphasis on preserving the structure envelope and

keeping modifications relative to the HEF antennas to a minimum, thus enabling the

transferability of the BWG technology for future retrofitting. Good performance results
were obtained.

I. Introduction

The DSN is planning to build a new R&D antenna at the

Venus Deep Space Tracking Station (DSS-13) at Goldstone,

California [1]. The proposed R&D antenna is intended to per-

form as a test bed for the development of advanced telecom-

munication technologies, among which are the incorporation

of (1) beam waveguide optics, (2) Ka-band (32 GHz) compo-

nents, and (3) high gain/noise temperature capability in the

millimeter wavelength range.

The inclusion of a BWG system is viewed as an item of high

research priority [2] for the existing baseline design of the

34-m HEF network (Figs. 1 and 2). It is also proposed that

any new designs be capable of retrofit to the existing network
of antennas at low cost and that all future DSN antennas make

use of the BWG optics.

The modeled Cross-Box configuration presented in this arti-

cle is one of several options that satisfy the above conditions

while introducing minimal changes in the antenna geometry
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and tipping structure weight relative to present 34-m DSN

HEF antennas. The new design also maintains the major fea-

tures of existing drive systems for the Az-E1 mount, the ali-

dade structure, and the azimuth wheel and track. Proper de-

sign of the elevation wheel and support structure (ELWH)
obviates the need to redesign the main reflector and its backup

truss (REFL). Thus, optimal configuration of the antenna

structure primarily entails the design of the substructure that
transfers loads from the main reflector to the elevation bear-

ings only (Fig. 2)-herein called substructure ELWH. This arti-

cle describes the design approach and finite element model
formation.

II. Design Statement

The "Cross-Box" design was modeled as a truss-type struc-
ture with all joints (nodes) modeled as pinned joints. Con-

nectivity between nodes can be achieved with bars/rods (one-
dimensional elements) or with plates (triangular or quadri-

lateral). All elements are assumed to be non-bending members.

Altogether, there are approximately 3900 members and 1200
nodes in the whole antenna structure above the azimuth track.

For optimization purposes, the members are judiciously

grouped to maintain antenna symmetries, resulting in 207

groups of design variables for the problem. The design varia-

bles comprise bar areas and plate thicknesses.

Determination of the sizes of the members is the eventual

problem that must be solved. Optimization schemes to obtain

explicit solutions are available in the literature for structures

in general [3]-[10] and for antennas in particular [11]. Not

as easily resolved are problems of establishing optimal config-

urations, especially those in which path obstructions are en-

countered in the structural geometry. The major difficulty in

designing for the present antenna is of this nature. Discussion

on the course taken to overcome it will be emphasized. The

complexities of the real antenna structure geometry and com-

ponent fabrication do not readily lend themselves to simple

solutions. Shape optimization schemes may help but they are

mostly of the perturbation type [12]-[18]. Effectively, this

amounts to perturbation of nodes in a finite element model.
However, attempting to weave a tube of eight-foot diameter

within the antenna structure demands more than minor adjust-

ments in geometry. By and large, when solution strategies

exist, they are usually problem-specific [12], [19] -[23]. Var-

iational methods [23] are not applicable to structures of

highly noncontiguous domain and therefore are of no value in

the present problem. Although the layout theory propounded

in [19]-[22] is applicable to 1- and 2-dimensional problems,

it is extremely difficult to apply to 3-dimensional problems.

Nevertheless, it is unlikely that any configuration under opti-

mization will evolve into a dramatically different geometry

without creating other problems, such as overlapping/intersect-

ing members.

When a viable configuration is found, the problem is "re-
duced" to one that is amenable to classical treatment of feasi-

bility, Lagrange multipliers, Kuhn-Tucker conditions, etc. For

larger problems, indirect methods are used whereby the notion

of active and passive constraints is introduced. Optimality

criteria methods [4]-[11] are based on such principles. Opti-
mal member sizes for the Cross-Box antenna were obtained

through the use of NASA/JPL-IDEAS programs [11], which

employ a version of the optimality criteria methods [9]. The

Cross-Box design antenna has more than 11,700 degrees of

freedom, which is common for antennas of this size. Stiffness

matrix decomposition time is significant and is compounded

when designing the parabolic surface of the antenna. Attempts

have to be made to best-fit thousands of points of the reflector
surface to a paraboloid at different antenna elevations [26].

Another problem arises from the degree of statical indeter-

minacy of the structure. The more statically indeterminate the

structure is, the harder it is to predict the inputs for the next
iteration [9]. The methodology becomes sensitive to step-size/

move limits chosen in the iterations. Not only does it take

longer to converge on a solution but it is also possible for the

algorithm to fat to yield a reasonable solution. In addition,
other solution-strategy-dependent features may affect compu-

tational efficiency. Perhaps the most direct impositions come

from side constraints. They increase computational time, if

nothing else. At worst, these constraints might be such that

the problem will have no feasible solution. The following are

the dominant constraints that affect the design of the Cross-
Box antenna:

(I) Maximum allowable member stresses (yield and

buckling).

(2) Upper and lower bounds of member sizes.

(3) Maximum allowable displacements at worst elevation

angle:

(a) Surface distortion (rms) from a best-fit para.

boloid due to gravity loading.

(b) Surface distortion (rms) from a best.fit paraboloid
due to worst case wind (I 20 degrees elevation and

0 degrees azimuth) loading.

(4) Boresight error due to worst case wind (0 degrees ele.

vation and 120 degrees azimuth) loading.

(5) Weight of tipping structure limited to 220 + i0 percent
kips.

(6) Lowest natural frequency.

1
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(7) Survivability of antenna in stow position (at zenith) for

a 1O0 mph wind.

Other less quantif'mble constraints on conceptualizing the

configuration are as follows:

(1) The structure shall be such that an elevation range of

6 to 90 degrees is possible.

(2) The structure shall be designed around the space re-

quired by the BWG path (as dictated by BWG optics)
within the antenna structural domain.

The structure should also have the following attributes:

(1) A simple configuration geometry.

(2) Minimal member connections/joints.

(3) Low-cost fabrication techniques.

(4) Duplicability of substructures and symmetries.

(5) Duplicability and retrofittability of the configuration

to the existing DSN HEF antenna (this also implies

that the design can adopt components from existing

antennas).

These attributes will directly translate into reduced cost

impact on the design.

III. Model Formation

To reach an optimum configuration for the antenna struc-

ture, steps were taken following the schematic of Fig. 3. The

blocks indicate the end products while the arrow paths denote

actions. In general, the design optimization strategy involves
the following procedures:

(1)

(2)

(3)

Conceive modularization/substructuring.

Design and optimize each substructure.

Synthesize the antenna by assembling individually

optimized substructures, followed by optimization of

the antenna as a whole using results obtained in (2) as

the best input prediction.

The above idealization assumes that the synthesis of opti-

mum substructures will yield an optimum global structure

through proper choice of modularization. Each procedure will
now be described.

A. Modularization

In designing the antenna structure, some modularization is

advantageous because it

(1) Allows the problem to be more easily managed.

(2) Allows the problem modules to be tackled separately

and simultaneously-and thus more efficiently.

(3) Allows individual modules to be solved on microcom-

puters, thus requiring less time on a "large" program

run on a "large" computer.

(4) Allows the convenience of making changes to, and test-

ing of, individual modules without having to run the

whole program/antenna structure.

(5) Allows different degrees of difficulty encountered in

different substructures to be treated by specialized

programs. (For example, the NASTRAN program

analyzes structures with bending members but NASA/

JPL--IDEAS does not. On the other hand, the latter

performs structural optimization and also surface

best-fitting, which the former does not.)

(6) Allows reduced mass storage.

The 34-m antenna at hand is divided into three substruc-

tures: (1) the main reflector and its backup truss, subreflector,

and mount (REFL); (2) the elevation wheel structural assem-

bly (ELWH); and (3) the alidade (ALl)). They are distinguished

by their distinct structural functions as shown in Fig. 2. The

REFL module upholds a parabolic surface, allowing minimal

surface distortion from some parabolic (shaped) profile, main-

taining homology [24], and promoting symmetrical displace-

ment of surface points. The ELWH module transfers loads

(gravity and wind) from the REFL module to the ALl) mod-

ule and simultaneously counterbalances the REFL about the

elevation axis. When the antenna is at zenith position, the

ELWH module ideally provides a plane surface on which the

REFL can be placed. When the antenna is at the horizon posi-

tion, the ELWH, with the counterweight that it carries, bal-
ances the REFL, thus relieving the elevation drives from load

bearing. The elevation drive is the only other point besides the

two elevation bearings at which there is contact between the

tipping structure and the alidade.

The third substructure, ALD, bears all the loads from the

tipping structure transmitted through the elevation bearings. It
provides the azimuth range for the antenna driven on a track.

It also provides a mount for the elevation drive. Proper design
of the antenna adheres to the principles described in [25].

B. Substructure Design and Optimization

The REFL module design of the NASA/JPL HEF antennas

was kept intact: it consists of a parabolic reflector with radial

ribs, hoops, and supporting truss. It is a symmetric structure as

shown in Fig. 4. For a Cassegrain-type antenna, the secondary

reflector and its quadripod mount are included in the REFL
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design. The unique features of the new Cross-Box antenna
come from the ELWH module with its homology features

[24], [25].

The conceptualization of the ELWH design is based on the

following observations and reasoning:

(1) Eight points (on the circumIerence of a circle) forming
the vertices of an octagon are selected at the base of

the REFL substructure (Fig. 5). These are attachment

points of the REFL to the ELWH enabling uniform dis-

placement of the REFL under symmetric zenith load-

ing. An octagonal truss system is conceived to be part
of the ELWH where these attachments are enabled

(Fig. 6).

(2) Loads on the tipping structure must eventually be

borne by the two elevation bearings. This implies that

connections must be made from eight points to two

points. However, this cannot be done directly if uni-
form deflection of the REFL is to be maintained under

uniform zenith loading. Reactions at the eight points
cannot be identical unless both points lie along the
zenith axis. This is not allowed, however, because a

BWG system is to be centrally routed. The solution to

this problem is achieved by transferring the loading

first to four points (four corners of a square) and then

to two points.

(3) The elevation wheel (bullgear) lies in the Y-Z plane per-

pendicular to the elevation axis (a line joining the two

elevation bearings). It must be incorporated into the
ELWH substructure and must exert even loading on the

four points in (2). An elevation "axle" and the eleva-
tion wheel suggest that a "+" structural form is needed
in the ELWH substructure.

Although an elevation "axle" is needed, BWG optics require-

ments demand that an eight-foot-diameter (2.44 m) path along

the elevation axis be devoid of any structure. This means that

a box must be built up to assume an elevation axle. Further-

more, to satisfy the criteria in (3), a cross-box must be con-

structed. This gives rise to the "Cross-Box" design. Figure 7

shows the position of the Cross-Box in relation to the octago-

nal truss. The "square" mentioned in (2) is dictated by nodes

9, 10, 11, and 12. Bracing members are not shown in Fig. 7.

Elevation bearings are a radius distance from the center of the

octagon and two feet below the lower edge of the truss. The

box is tapered, with the thickest possible section at the central

portion. This design feature ensures that flexural deflection of

the "axle" is minimized. Figure 8 shows the complete enve-

lope of the cross-box and the BWG path. Bracings for all faces

(except 9-10-11-12-9, 25-26-27-28-31-32-21-22-25, and the

four faces typified by 31-30-46-31) are not shown. Bar ele-

ments are grouped according to their symmetry about the X-Z

or Y-Z plane in conjunction with their positions. The cross-
sectional thickness (of the tapered portion) of the x-direction

leg of the Cross-Box is limited by the vertical section of the

BWG path. 1 This design enables an elevation range of 6 to 90

degrees. Also, the elevation wheel (bullgear) is attached to

the 8 points: 41, 23, 24, 42, 43, 29, 30, and 44. It has sym-
metry about both the X-Z and Y-Z planes and has a design
similar to that of the DSN HEF antennas.

The transfer of loads from the REFL to the ELWH is done

by connecting bar members from the octagonal truss to the

cross-box. Figure 9a shows a plan view of how the connection
is done. The "X" bracings shown are conceived to restrain
relative rotation about the reflector local Z-axis between the

cross-box and the octagonal truss. Note that the four points

on the X-Z plane are equally loaded for Z-loading. Members

symmetrical about the X-axis and those about the Y-axis are

grouped differently to allow homology of structure. This allows
for reduced RMS distortion due to Y-direction loading which

creates an antisymmetric displacement pattern. Next, rigidity

of the box structure is ensured by bracings as shown in Fig. 9b.

The "X" bracing indicated by the broken lines in the center
indicates that it is at the bottom face;the top face is open for

the BWG path. Torsional rigidity of the cross-box about the
local Z-axis is established by the bracing shown in the "eye

view." The broken circle shows the vertical portion of the
BWG tube. 1

The REFL substructure is optimized by restraining the

eight attachment points from translation in all directions. The

Rigging-Angle Method [26] was used to determine the 'worst

root-mean-square distortion and pointing error (angle) of the

best-fit parabolic surface. (The Rigging Angle Method deter-
mines the elevation angle for which, if a perfect paraboloid is

designed, the worst distortion rms from a paraboloid will
occur identically at the zenith and horizon looks of the an-

tenna.) The following results were achieved:

(1) Surface rms distortion from a best-fit paraboloid due

to gravity loading alone is 0.005 inch.

(2) Surface rms distortion from a best-fit paraboloid due
to wind at 30 mph (120 degrees elevation and 0 degrees

yaw) is 0.009 inch.

(3) Boresight error due to a 30 mph wind (0 degrees eleva-
tion and 120 degrees yaw) is 0.003 degree.

These results depict the individual effect of the loads ap-

plied independently. Optimal sizing of the members has

resulted in satisfying specifications as shown in Table 1.

IActually, this segment of the BWG tube is not vertical but tilted at an
angle of 13.5 degrees to the vertical in the Y-Z plane.
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AnALD substructure design can be constructed with little
modification from the baseline antennas. Construction of ALD

poses no difficulties since the only loadings are applied forces

and moments at the elevation bearings. Performance charac-
teristics similar to those of the DSN antennas were obtained

with little modification in the design.

C. Substructure Synthesis and Optimization

Figure 10 shows a sketch of an assembled cross-box antenna.
Note how the elevation wheel is attached to the components

discussed in Figs. 7 and 8. Also seen are the tapered legs of
the cross-box and the octagonal truss. The baseline antenna's

structural envelope is preserved. Hence, the condition of the

fewest changes possible to antenna subsystems is observed.

Figures 10 and 11 show essentially the synthesized structure
and its accommodation of a center-fed BWG system as dic-

tated by microwave optics.

Optimization was performed on the antenna structural
model combining REFL and ELWH. Member sizes in the

REFL were not allowed to change (thus allowing direct usage

of the DSS 15 design). Results obtained after optimization on
member sizes satisfy all specifications. Table 1 lists perfor-
mance indices achieved. Also cited are the DSN HEF antenna

specifications.

IV. Summary

This article reveals the new Cross-Box design concept pro-

posed for the planned 34-m-diameter development antenna at

the Venus site. The proposed design has the ac_ommodability

of a large beam waveguide (2.4-m) system for Ka-band opera-

bility and retrofittability to the 34-m high efficiency antennas.

The Cross-Box antenna is optimal in both structural configura-
tion and member size, satisfying many functional constraints.

Observance of structural compatibility with the 34-m antennas
allows transferability of technologies.
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Table 1. Achieved performance indices

RMS distortion due Boresight error due

Antenna Weight RMS distortion due
to gravity alone to 30 mph wind: to 30 mph wind:

worst case worst case

type (kips) (inches) (inches) (mdeg)

Cross*

box

antenna 244 0.009 0.009 10

DSN HEF

antenna 217 0.015 0.019 13"

*This figure includes the alidade. A figure for the tipping structure alone was not available. From

this estimate, the alidade contribution is approximately 4 millidegrees.
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Fig. 5. Finite element model of the reflector (back) showing eight points where attachment
of REFL and ELWH will occur
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Fig. 6. The octagonal truss
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path to the antenna (X-Z plane)

39



TDA ProgressReport42°92

N88-18779 i

Octo_r-Oecem_rl_7

A 2.3-GHz Maser at Usuda, Japan, for TDRSS-Orbiting
VLBI Experiment

R. B. Quinn

Radio Frequency and Microwave Subsystems Section

A 2.3-GHz traveling-wave maser/closed-cycle refrigerator (TICM/CCR) that is used in

the DSN was installed and successfully operated on the 64-m antenna at Usuda, Japan.

The TWM/CCR supported the first very long baseline interferometry ( VLB1} experiment

to use an orbiting spacecraft as one of the receiving antennas. The experiment required
a 15-K receiving system over a 2271- to 2285-MHz bandwidth. The maser installation was

made during June 1986, and successful VLB1 measurements were made during July and
August 1986 and again in January 1987.

I. Introduction

A request was made to the Radio Frequency and Microwave

Subsystems Section at JPL to install and operate a traveling-

wave maser/closed-cycle refrigerator (TWM/CCR) on the 64-

meter antenna at the Usuda Deep Space Center (UDSC) near
Usuda, Japan. The 15-K receiving system was required for the

conceptual demonstration of a very long baseline interferom-

etry (VLBI) experiment that uses an orbiting receiving station

at one end of the baseline [1], [2]. The TWM/CCR was pre-

viously used at Usuda for the tracking of the International

Cometary Explorer (ICE) during the comet flyby period in

1985. This previous maser system installation has been thor-

oughly described in [3], so a detailed description will not be

repeated here. Although the maser system was similar to the

first implementation, modifications were made to improve its

operation and reliability.

II. TWM/CCR

The TWM/CCR was originally built and implemented in
the DSN in 1973 and was one of the first 2.3-GHz masers to

use the cold probe type of low-noise cryogenically cooled

input transmission line [4]. Due to the age of the system and

the amount of shipping and handling to which it had been

exposed, it was felt necessary to open the CCR and make the
desired corrections and improvements.

The signal input impedance match had degraded consider-

ably in relation to its original performance. The input return
loss Was increased to 13 dB at 2270 MHz and 17.5 dB at

2300 MHz, a 3- to 4-dB improvement, by replacing and tun-

ing a short section of coax in which there had been a slight

migration of the Teflon dielectric. No changes were made to
the maser structure itself.

The shock and vibration that had occurred during previous

shipping had caused some hardware to become loose. Most
notable were the screws that attach the thermal switch. A

loose connection at this point causes a poor thermal contact

and results in a longer maser cool-down period. The problem

was attributed to rotational loads that could be applied to the

joint during shipping, coupled with the soft copper material
involved. An additional structural brace made of thin-wall
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stainless steel tubing has been installed on two masers to date,

and the problem has not recurred in the last 2 years.

New cryogenic temperature sensors were installed on the

refrigerator, and the CCR controller in the instrumentation

rack was modified to provide digital readout capability for the

sensors. These sensors provide a continuous, accurate readout
of refrigerator temperatures, enabling more accurate diagnosis

of refrigerator performance problems than was previously pos-

sible. Identical sensors are now being installed in DSN maser

systems.

III. Shipping, Installation, and Operation

The experience gained during the shipment of the TWM/

CCR to Japan in 1985 helped prevent many of the problems

that can occur due to the complexities of foreign customs

policies. With this information available, it was possible to

predict and eliminate all of the previous delays, and the sys-

tem arrived in Usuda 8 days after its shipment from Los

Angeles International Airport.

The beam-waveguide feed configuration of the Usuda an-
tenna greatly contributed to the ease of installation of the

TWM/CCR. Since most of the mounting hardware had been

left in place in the laboratory environment of the beam-

waveguide antenna, minimal problems or delays were encoun-

tered during installation. Whereas installation in a DSN Casse-

grainian antenna requires advance s.cheduling of an 8-hour

maintenance period, installation of the TWM/CCR system was

completed and the cryogenics were ready to start one day

after its arrival, with no interruption of ongoing tracking
activities or maintenance.

The initial operation of the system was not without prob-

lems. One compressor and a CCR drive unit were replaced dur-

ing the first week. After that, the maser continued to be opera-

tional without further mishaps during the 1-month-long

TDRSS experiment 1986 observing schedule. In January 1987,

during the second phase of the experiment, the TWM/CCR was

easily restarted and operated without difficulty during the

lO-day 1987 observing schedule.

The maser was tuned to 2277 MHz, and the initial system

gain and power levels were adjusted: System temperature mea-

surements were first made on July 3, 1986. The gain was

adjusted to 50 dB with a bandwidth of approximately 20 MHz

at the -3 dB points. Using the cold sky/ambient load Y-factor

method, the system noise temperature was measured to be

14.9 K at an antenna elevation of 90 degrees. During January

1987, the maser gain was adjusted to 48 dB at a bandwidth of

approximately 25 MHz. The system temperature was mea-
sured to be 15 K. This performance was essentially identical

to data taken in 1985 for the ICE installation, when system

noise temperature measured 15 K at 2270 and 2295 MHz.

IV. Conclusion

For the second time in as many years, a complete TWM/

CCR system was shipped and installed on a foreign antenna in

a timely manner. The project was a relatively cost-effective

one, since it largely involved preexisting hardware. The TWM/
CCR system performed reliably without the benefit of an

operational spare and contributed to the success of the VLBI

experiment it supported. The beam-waveguide feed configura-
tion of the Usuda 64-m antenna, in contrast to the DSN Casse-

grainian antennas, also contributed to ease of installation and

operation.
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A Lower Bound for the Decoder Error Probability of the
Linear MDS Code

K.-M. Cheung

Communications Systems Research Section

In this article, a lower bound for the decoder error probability (PE[U] ) of a linear

maximum distance separable (MDS) code is derived by counting the dominant types of

decoding words around code words. It is shown that the lower bound derived in this

article is similar in form, and close numerically, to the upper bound derived in [2].

I. Introduction

Let C be a linear code of length n, dimension k, and mini-

mum distance d. Let q be a positive power of a prime. An

(n, k, d) linear code C over GF(q) is maximum distance sepa-

rable (MDS) if the Singleton bound is achieved;that is, d = n -

k + 1. A code is t-error correcting if for some integer t, 2t _<

d-1.

In [1], by repeated use of the inclusion and exclusion prin-

ciple, an exact expression for Du, the number of decodable

words of weight u, is derived. Also in [1 ], the exact decoding

error probability PE(U) of a linear MDS code is evaluated.

However, the formulas derived in [1] are complicated and

clumsy, and offer no mathematical insight. In this article,

by assuming that q/> n, the lower bounds of PE(U) and D(u)

are derived from a completely different approach-simply by

counting the dominant types of decoding words around code

words. In Sections II and III the lower bound derived in this

article is shown to be similar in form, and close numerically,

to the upper bound derived in [2]. In Section IV, with the

assumption that q >_ n, the lower bound of PE(U) as a func-

tion of u is shown to achieve its minimum value at u = d - t.

Thus, the lower bound for u = d - t is the overall lower bound

of PE(u ). For q < n, this may not be true.

II. Lower Bound of the Number of Code
Words of Weight w

Let A w denote the number of code words of weight w. A

lower bound ofA w is given by the Ibllowing theorem:

Theorem 1 :

where

Aw>_C(n) q-d+l(q _ 1)w

(q - l )d

d<_w<_n (1)
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Proof: From [ 1 ], A w is given by the following expression:

w--(;) r. (-1;w-l 
i=0

w-d (W- 1) qW-l-i= (;)(q-1)q-a+' _] (-1)i i
i=0

(;)

ii]
i=w-d+l

Consider the bracketed term in Eq. (5). Since q/> n, it is an

ascending function of w. So if we denote

w-d+

c-- -
w=d+l

(q - 1)a

we have

Aw>_C(;)q-a+l (q-1) w d<_w<.n

where C is a scaling factor very close to 1.

Consider the second term of the above expression. Since

q >_n,

(W; 1)qW--l-i_ (7+_)qW-l-i-I

ford_<w_<n andw-d+l_<i_<w-l. It is not hard to see

that the following inequalities are obtained:

Aw>_ (;)q-d+l(q_ 1)w (2)

A
w <- (;)q-d+l(q-l)W I1

w = d,d+2,d+4 ....

w- 1 ) qd-2w-d+1
+

(q - l)W-J

III. Derivation of Lower Bound

Let d be a decodable word. Then J can be expressed

uniquely as a sum c + e, where F is a code word and g is an
error pattern of weight less than or equal to t. Let d have

weight u and F have weight s, s _< t. The weight of F is then
confined within a certain set of values, depending on the value

of u and s. The main idea of deriving the lower bound of the

number of decodable words of weight u is to count a certain

"dominant" subset of code words that, when added to appro-

priate error patterns, gives rise to decodable words of weight u.
Let us define

and

f (w w- 1 ) qd-2

-d+l

- _q- 1)w_,

w = d+l,d+3, d+5 ....

B = (w:w is the weight of a code word that is at a dis-
U,$

tance s from a decodable word of weight u}

We then have the following expression for Bu, s depending
on the value of u and s:

(3)

(1) Ifd-t<_u<.d- l <_n-t,

thenBu, s= {w:d<_w<_u+s}

(2) Ifd<_u<-d+t -1 <_n-t,

(4) then Bu, s = (w:d<_w<u +s}

(3) Ifd+t<_u<_n-t,

thenBu,s= (w:u-s<<.w<_u+s}

(4) Ifn-t+l<u<<-n:

If u + s_<n, then Bu,s= (w:u- s<<.w<_u + s}

(5) If u + s >n, thenBu,s= {w:u- s<_ w<_n)

44



We can then express Du as follows:

Du = Z Z Aw × {#°ferr°r patterns of weight (6)
s W_Bu, s s that give rise to a decodable

word of weight u from a code

word of weight w}

We see that in the case d -t <_ u <_ d - 1, an allowable error

pattern must be of weight s E {d - u ..... t} C {0, 1 ..... t}.

In the case d _< u _< n, an allowable error pattern must be of

weight s E {0, 1 ..... t}.

We also observe that for a linear MDS code, if q _>n and q

is large, then

-- 2>>1 for most d _< w _< n

Thus, for the purpose of finding a lower bound of Du, we do

not need to consider all w E Bu, s. We need only count those
w's that give rise to most decodable words of weight u. It is

!

then logical to consider only those w E Bu, s C Bu, s where
B'u,s is a subset of Bu, s (Bu, s consists of the larger numbers in

Bu,s), instead of all w CBu, s. We now define Bu, s as follows:

(1) Ifd-t<_u<.d- l _n-t,

thenB'u, s= {w:d <_ w<.u + s}

(2) Ifd<.u<_d+t-l<_n-t,

thenB'u,s= (w:u <_ w<_u +s}

(3) Ifd+t<.u<_n-t

then Bu, s = {w :u <<.w <_u + s)

(4) Ifn-t + l <_u<.n:

Ifu+s<_n, thenBu, s= {w:u<<. w<_u + s)

Ifu+s>n, thenB'u,s= {w:u<.w<.n}

Before we proceed, we want to categorize the decodable
words according to the following definition.

Definition 1 :

Let d be a decodable word which can be expressed in the
form ay = _+ _'. Let T_- denote the set of nonzero coordinates

of b-and T_-denote the set of nonzero coordinates of _.

(1) d-is defined to be of type A if T_ C T_-.

(2) d-is defined to be of type B if it is not of type A.

It can be shown that for a given u, the number of type-A

decodable words of weight u is usually much greater than the

number of type-B decodable words of weight u for most u.

However, an explanation of the above claim is complicated

and clumsy, and it is very hard to present a formal proof. A

crude and oversimplified explanation is that type-A decodable

words lie within Hamming spheres of code words of weights

up to u + t, whereas type-B decodable words lie in the Ham-

ming sphere of code words of weights only up to u + t - 2.

As was mentioned before, A w >2> A_v_l for most w. This
partly explains why the number of type-A decodable words

is much greater than the number of type-B decodable words of
weight u.

Summing up the above results, a lower bound of the num-

ber of decodable words of weight u is given by the following
expression :

Aw×
s wEB'

u_s

{# of error patterns of weight

s that give rise to a type-A

decodable word of weight u

fiom a code word of weight w}

(7)

We have four cases to consider, depending on the value of u.

(1) d-t<_u<.d-1

In this case, s E {d -u ..... t} and w EBu, s = {d,d +

1 .... ,u+s}. There are(s) ways of choosing s coordinates
that give rise to type-A decodable words. But in order to have

a type-A decodable word of weight u, the w - u nonzero

coordinates in ?-must match with the corresponding w - u
nonzero coordinates in _-to give w - u zeros in these coordi-

nates. The remaining s - (w - u) coordinates of _-must also

match the corresponding s - (w - u) coordinates of ?-to give a

nonzero value in each of the s - (n - w) coordinates. There are

(q _ 2)s- (u-w) ways to do so.

Thus, the number of decodable words of weight u, where
d - t <_ u _<d - 1, is lower bounded as follows:

t (W)(w)s (q _ 2) s_Du>_ E E Aw -u

$=d-u W_Bu, s

( W --tl )

We then substitute the lower bound ofA w in Eq. (1) for the

above expression, and we have a lower bound of Du as follows:

t u+$

Ou>_ Z Z C(;)q-d+m(q-l) w
s=d-u w=d
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We see that

(:t(w)(w:.)
can be expressed as

(:)(:_u)
Let X = w - u. The above expression can be rewritten as

Du >_ E C
s=a-u x=a-u _-_--_-11

Next, it is not hard to see that for the given ranges of u, s and w,

t-q-Z-f-l J[q- 2_s-w+u > (_- l)q- 2 t

Also, for the purpose of consistency with the equations that

follow, the lower limit of the first summation on the RHS of

the above expression can be replaced with 0 and thus our final

expression is

where

D)C(q-_q 1) d-1 tq-2_t__ 1] (_) (q- 1) u-d+l

,. )

(2) d<_u<_d+t

In this case s E{0, 1 ..... t} and wE{u,u + 1,... ,u + s}.
The derivation of lower bound of the number of decodable

words of weight u is very similar to case 1, and the details
of derivation are omitted. Since the smallest value of the

code word weights that are involved in counting is u, the

scaling factor of the lower bound is now

u - 1 ) qd-2
C '= 1- u-d+l

(q - 1) u-1

which is closer to 1 than C. The lower bound of Du is then

given by

D _>C' (q
u \7--U

X _ _ (n_U)(sU_x) (q-l) s
s=O X=0

The lower bound can again be simplified by recalling the

famous combinatoric identity

and the final expression for this case is

Du_C'(_) d-l lq-21t_-__ll(_)(q-l) u-d+l

= C' q - 2 (q _ l )u_a+ 1

X V(t) d<_u<_d+t

(3) d+t+ l <_u<_n-t

In this case, s E{0,...,t) and w E{u .... ,u +s}. The

derivation is exactly the same as in case 2, and the lower

bound is given by

D >>'C' _q l) a-' _-f- ll[q- 2_t (_u) (q- 1)u-d+l

× V(t) d+t+l<_u<_n-t

(4) n-t + l <<.u<_n
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In thiscase,if u + s _< n then w E{u ..... u + s}, and if

u + s > n then w _(u ..... n). The derivation of the lower

bound is slightly different from those of cases 2 and 3, but

the final expression turns out to be the same. That is,

Du c' (q-ql)Cl-ltq - t )u-a+l1f (q- 1

× V(t) n-t+l<_u<<.n

In summary, the lower bound of the number of decodable

words is given by the following equations:

D>_C(q--_)a-l[q-2V( n)_-q--Z-T_l'(q - 1) u-a+l

-ld //

x _ X s-_, (q-1)_
s=O h=d-u

d-t<_u<_d-1 (8)

d-Ilq-2 V 1)._d+,

×V(t) n-t+l<_u<.n (9)

where

and

C' = 1
u-1 )qa-2u-d+l

(q - 1)'`-1

We have shown in [1 ] that the decoder error probability is

related to the number of decodable words via Eq. (2) and thus

the decoder error probability PE (u) is lower bounded as follows:

q--2 t t

PE(U)>Cq-a+I (#_-i-i) s_=ox S=_d_'`(n;u) (sUx)(q_l)S

d-t<<.u<_d-1 (10)

PE(u)>_C'q-a+l [q - 2_ t
_qZ-l-l] V(t)

d<<.u<<.n (11)

where

d) qa-2
C=I_ 2

(q - 1) a

and

C ' = I

u-1 )qd-2u-d+l

(q- 1)"-1

IV. Overall Lower Bound of PE (11)

In this section, an overall lower bound of PE (u) for all u is
given by the following theorem and corollary.

Theorem 2:

If q ) n, then the lower bound OfPE(U ) in Eqs. (10) and
(11) is smallest for u =d - t.

Proof: First of all, it is not hard to see that the lower bound

in Eq. (10) is always smaller than the lower bound in Eq. (11)
because Inl is always greater than the incomplete Vandermonde

_.s! t n-u
convolution Y'x=a-'` (x)(tux).Ms°,thescaling fact°rC'in
Eq. (11) is always greater than the scaling factor C in Eq. (10).

Thus, to prove the theorem, we need only consider the lower

bound of PE (u) for d - t _<u _<d - 1. It is not hard to see that
a sufficient condition is to show that

d-t<<.u<<.d-1

It is obvious that

t

k=d-u
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We now proceed to show that

h=d-u

Let l = t- d + u and m = t- X;we have

x=a_u (n X u m=0 t-m-u) (t-X) (q-1)t = _ (n-d+t-l)

x(d-t+l)(q-1)tm

Since d_> 2t + 1 and O<,l<_t- 1,

Thus,

(n-d+t-l)t_m (d-t+l)m (q-1)t
m=O

>1 Z -d + t-I -dt -m (q - 1)t = t
m=O

+ 9 (q - 1)t

and the theorem is proved.

Corollary:

An overall lower bound OfPE(U ) for all u is

P_(u) <_C [q -2it eE(d-t)

 g=r-l ! t (q- 1)'

where

Proof: A direct result from Theorem 2.

V. Remarks

For q i> n, the upper bound and lower bound OfPE(U ) give

a good estimation of PE(u). The upper bounds [2], lower
bounds, and exact values of the PE (U)'S of the NASA code and

the JTIDS code are tabulated in Table 1 and Table 2, respec-
tively. We observe that the estimated values (upper bound and

lower bound) are more or less of the same order of magnitude
as the exact value in each case.

Also, we have shown that with the assumption that q t> n,

an overall lower bound OfPE(U ) (for all u) is given by

[q-2]tPE(d_t)
c 7-:-f_]

For q < n, this may not be true.
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Table 1. Decoder error probability of the NASA code*

Weight Lower bound Actual value Upper bound

17 7.769 X 10 -15 9.464 X 10 -15 2.956 Z 10 -14

18 1.665 × 10 -14 1.913 X 10 -14 2.957 X 10 -14

19 2.171 X 10 -14 2.401 X 10 -14 2.957 X 10 -14

20 2.361 X 10 -14 2.660 × 10 -14 2.957 × 10 -14

21 2.414 X 10 -14 2.602 × 10 -14 2.957 X 10 -14

22 2.425 X 10 -14 2.608 X 10 -14 2.957 X 10 -14

37 2.450 X 10 -14 2.609 × 10 -14 2.957 X 10 -14

*NASA code (255,223);q = 256; t = 16.

Table 2. Decoder error probability of the JTIDS code*

Weight Lower bound Actual value Upper bound

9 1.340 x 10 -6 3.750 × 10 -6 9.250 X 10 -6

10 5.741 x 10 .6 1.439 x 10 .6 9.349 x 10 .6

11 1.310 x 10 -6 2.951 X 10 -6 9.350 X 10 -6

12 2.123 × 10 -6 4.329 × 10 -6 9.350 × 10 -6

13 2.767 × 10 -6 5.189 × 10 -6 9.350 x 10 -6

14 3.140 x 10 .6 5.547 x 10 -6 9.350 × 10 -6

25 4.328 x 10 -6 5.626 x 10 -6 9.350 x 10 -6

*RS code (31, 15);q = 32;t = 8.
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In this article a method to define the labels of the state diagram of a linear finite-state

code [1] is presented and investigated. This method is particularly suitable for simple
hardware implementation since it simplifies the encoder structure. The method can also

be applied to the labeling of a state diagram that is not completely connected to obtain

a linear finite state code with larger free distance.

I. Introduction

It was shown in [1] that a finite-state code (FS code)on a

completely connected state diagram with 2m states requires at

least 2m÷l labels. Also, a simple method to define such labels

has been suggested in [1]. However, the codes constructed

using the method in [1] are not linear. In this article, another
method using shift registers to define the labels of the state

diagram of the FS codes is presented. This method is particu-

larly suitable for simple hardware implementations since it

simplifies the encoder structure. The method can also be

applied to the labeling of a state diagram that is not com-

pletely connected to obtain an FS code with larger free

distance. Lastly, a mapping scheme to assign the cosets to the

labels generated by the shift registers is described. It can be

shown that by using the above method, a linear FS code can
be constructed.

In order to facilitate the discussion on FS codes with non-

completely connected state diagrams as well as those with

completely connected state diagrams, the following definition

of FS codes is adopted:

Definition 1: An (n, k, m) finite state code (FS code) on

a c-connected state diagram is a code with the following

properties:

(1) The code has rate k/n.

(2) Its operation can be represented by a state diagram
with 2 rn states.

(3) There are 2c (c _< m) branches going into each state

and 2 c branches going out of each state.

(4) Each branch of the state diagram is associated with a

code (code word length = n and code size = 2k-c), and

any two different codes associated with different

branches are disjoint.

II. Preliminaries

Some important results in the theory of convohitional
codes will now be reviewed. These results will be referred to in

the proofs in later sections.
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A typicalencoderof an(nl, c, m)convolutional code con-
sists of a linear sequential circuit (with c shift registers) that

accepts c input bits and outputs n I bits. It is well known that
the operation of the encoder can be represented by (1) a state

diagram with 2 m states, 2c branches going into each state, and

2 c branches going out of each state; or (2) a c × n 1 transfer
function matrix (denoted by G [D]) such that the entries of

the matrix are polynomials in D, representing the generator
sequences of the code.

In order to avoid catastrophic error propagation, the trans-

fer function matrix must satisfy Massey and Sain's condition

[2] (a necessary and sufficient condition) on non-catastrophic
codes:

GCD IAi(O ), i = 1,2 .... , (_1)1 = D/

for some l/> 0, where Ai(D), i = 1,2 ..... (rid) are the deter-
minants of the (nd) distinct c × c submatrices of the transfer
function matrix G(D).

III. Generation of Labels by Shift Register

FS code encoders have structural properties very similar

to those of convolutional encoders, and their operation can
be described by a state diagram. In the case of a convohitional

code, each branch of the state diagram is labeled by an n l-bit
output sequence, whereas in the case of a finite-state code

according to Definition 1, each branch is labeled by a code
that is not necessarily linear. Because of the similarities be-

tween convohitional codes and finite state codes, it should be

expected that much of the theory on structural properties of
convolutional codes will be applicable to finite state codes.

In order to guarantee a noncatastrophic finite state code

with good distance properties, the labeling of the branches of

the state diagram must satisfy the following conditions [1] :
(1) different labels out of each state; (2) different labels into

each state; and (3) no disjoint paths with identical labels that

remain unmerged indefinitely.

A method to assign the labels of the state diagram of a

finite state code by using the linear sequential circuit (with

shift registers) of a noncatastrophic (nl, c, m) convolutional
code is now described. Let the c shift registers have lengths

l I, l2 ..... lc where l 1 + l 2 ... + lc = m. The pth row of the

corresponding c × n1 transfer function matrix thus consists

of polynomials in D of degree no greater than lu for 1 _<p _< c.
The state diagram of the convohitional code consists of 2 m

states (each state is defined by the shift register content);

also, there are 2 c branches going into each state and 2 c
branches going out of each state. Each branch in the state

diagram is assigned an n1-bit sequence bo, b I ..... bnl-1,
which consists of the n I output bits of the shift registers. Let
us assign to the branches of the state diagram, which are asso-

ciated with the n I -bit sequence bo. b I ..... bn I the label i

such that i = bo + 2b I +... + 2n-I bn -1" Each of these labels
represents one of the disjoint codes. ]'here are 2 nt of them.

This modified state diagram of the convolutional code is used

as the state diagram of an (n, k, m) finite state code on a
c-connected state diagram.

The construction of a shift register circuit that generates
the state diagram of a finite state code that satisfies conditions

l, 2, and 3 is given as follows. It is not hard to see that condi-

tion 1 is satisfied if, for a fixed shift register content, different

inputs to the shift registers produce different outputs. This can

be achieved if there exists at least one c × c submatrix _i(D)

of the transfer function matrix G(D), i= 1,2 ..... (nc_), such
that the term "1" appears exactly once in each row and in

each column of _i(D). Similarly, condition 2 is satisfied if,
for a fixed input, different shift register contents produce
different outputs. This can be achieved if there exists at least

one c × c submatrix f2/(D), j = 1, 2 ..... (nc), such that the
term Dry representing the last shift register stage of the pth

shift register appears exactly once in row p for 1 _<p _<c, and
each of these D l, , D z2 .... , D tc terms appears in different

columns of f2/(D).

It was shown in [3] that if the (nl, c, m) convolutional
code that generates the state diagram of the finite state code is

noncatastrophic, then the labeling also satisfies condition 3.

Thus, the c X n I transfer function matrix G(D)of the convo-

lutional code must satisfy Massey and Sain's condition [2]. It

will be shown in later sections that the minimum value n_
could have is c + 1. Two algorithms to construct a c × c + 1

transfer function matrix G(D) of the convolutional code are
given as follows:

Algorithm 1: Completely connected state diagram, dy =
2 branches.

(1) Construct a c × c matrix G'(D) such that

a_. •,I(D) = 1. i= 1 ..... c. j = i

= D, i = 1 ..... c, /' = (i+l)modc

= 0 otherwise

(2) Append the column [1 ..... 0] T to G'(D) to obtain a

c X c + 1 matrix G(D).
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An example of a 3 × 4 transfer function matrix G(D) con-

structed using the above algorithm is given in Table 1. It is

obvious that G(D) satisfies conditions 1 and 2. Also, it is not

hard to see that one of the determinants, £xj(D), j = 1 .....
(c÷ 1h equals 1 and the rest are nonzero. Thus

C ]_

C+I)]GCD j(D), j = 1 ..... = 1
C

Massey and Sain's condition is satisfied and the state diagram

generated by this transfer function matrix satisfies conditions
1,2, and 3.

Algorithm 2: Non-completely connected state diagram, dy =
3 branches.

(1) Construct a c × c matrix G'(D) such that

Gi/(D = + j = i)' 1 D, i=1 ..... c,

= D 2, i = 1 ..... c, j = (i+l)modc

= 0 otherwise

(2) Append the column [1 ..... 0] T to G'(D) to obtain a

c × c + 1 matrix G(D).

An example of a 3 × 4 transfer function matrix G(D)

constructed using the above algorithm is given in Table 2. Again

it is obvious that G(D) satisfies conditions 1 and 2. Also, it

can be shown that one of the determinants, AI(D), equals
D2(c-1) and the rest are nonzero. Thus

GCD A i (D), j = 1 ..... =
C

. where l is some integer. Massey and Sain's condition is satisfied

and the state diagram generated by G(D) satisfies conditions

1,2, and 3.

IV. Properties

On the basis of the labeling procedure by shift register

above, which is based on a linear sequential circuit, the finite

state code possesses a mathematical structure that facilitates

encoding/decoding and simplifies hardware implementation.

Also, this labeling procedure is applicable to the construction
of finite state codes with incompletely connected state dia-

grams to obtain larger free distance.

Definition 2: Let N be the number of states of a finite state

code. A labeling matrix L of the state diagram is defined to be

an N × N matrix, where L(i, j) denotes the label from state i

to state j.

Let u = (u 1, u2,..., u c) represent the c input bits to the

convolutional encoder. Let D = (D 1, D 2 ..... De) represent
the last c shift register stages of the convolutional encoder.

That is, Dp represents the term Dip in row p for 1 _<p _< c.
In the following theorems, some properties of FS codes which

use the new labeling procedure are revealed.

Theorem 1: For a state diagram with 2m states generated by

G(D) which satisfies conditions 1, 2, and 3, if the graph has
2c branches going into each state and 2c branches going out of

each state, c _< m, at least 2c+1 labels are required.

Proof: Suppose that 2c labels suffice. The transfer function

matrix G(D) of the convolution code that generates the state

diagram of the FS code is then a c × c matrix. By condition 1,
since different labels are coming out of each state, the c out-

put bits can be written as

uA+d

where A is a c X c nonsingular matrix and _d is a constant
binary c-tuple which depends upon the shift register contents

of the encoder. Thus, IAI = a, where a is a nonzero integer.

Thus, the term a is contained in the expression of IMI. Simi-

larly, by condition 2, since different labels are going into each

state, the c output bits can be written as

DB+e

where B is a c × c nonsingular matrix and e is a constant

binary c-tuple, depending upon the input bits and the shift

register contents other than D],..., D c. Again, [B[ = 13for
some nonzero integer 13.Therefore the term 13D m = 13Dll+'"+lc

is contained in the expression of IMI. Thus, IMI = 13Dm + ...

+ a and IMI is not of the formD t for some l_> 0. This violates

Massey and Sain's condition and the convolutional code is

catastrophic. This in turn implies that the state diagram

generated by this convolutional encoder is catastrophic and
thus at least c + 1 output bits for the convolutional encoder

are needed. This implies that at least 2c+1 labels are needed in

the state diagram. •

In fact, Algorithm 1 and Algorithm 2 in Section II show

that c + 1 output bits are sufficient to guarantee that condi-

tions 1,2, and 3 are satisfied.

Theorem 2: Let L be the labeling matrix of a state diagram

generated by G(D) which satisfies conditions 1, 2, and 3.

Row i and row j (column i and column j), i 4: j, of L have
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either the same set of labels or a completely different set of

labels.

Proof: The state of the convolutional encoder that generates

the required state diagram of the finite state code is defined as

the shift register contents of the encoder. For an (nl, c. m)

convolutional code, let the binary m-tuple [D l ..... Dm]

denote the state that corresponds to the shift register stages

D1,... , D m of the encoder. Note that the encoder is con-

structed in such a way that for a fixed state [D 1 .... , Dm],

different inputs to the shift registers produce different outputs

(condition 1). If [D 1 ..... Dm] = [0 .... , 0], the set of all

possible binary n 1-tuples (labels) that represent the output

bits of the encoder forms a c-dimension subspace K of an

n l-dimension vector space over GF(2) (because the encoder

is a linear sequential circuit). This set K is isomorphic to the

row of the labeling matrix L that corresponds to the state

[0 ..... 0]. Now, if [D 1 ..... Dm] 4:[0 ..... 0], then

it is not hard to see that the set of all possible output bi-

nary n 1-tuples (output bits of the encoder) is of the form

K + £, where e is a binary n 1-tuple (constant) determined by

[D 1 ..... D m ]. If _e_ K, then K and K +_e are disjoint (since

K is a c-dimensional subspace in an n j-dimensional vector

space). If e E K, then K = K + £. A similar argument holds

for the case ofK+e 1 andK+e 2,wheree 1 and_e 2arebinary

nl-tuples determined by different [D l ..... Dm]'S. That is,

if el q_ K + £2, then K +_e 1 and K +_% are disjoint. If_e 1 E

K + £2 then K + e 1 = K + g2' This proves that any two rows of

a labeling matrix L have either the same set of labels or a com-

pletely different set of labels. The proof for the case of the

columns is similar to the one above. •

V. Assignment of Cosets to Labels

A code C over GF(q) is said to be linear if and only if the

following condition is satisfied:

V_a, _bEC and VT, 6EGF(q), 7g+6bEC

In an FS code. even though we have a linear convolutional

structure (labels are generated by outputs of shift registers),

the overall code may not be linear if the cosets are not prop-

erly assigned to the outputs of shift registers. There may exist

two code word sequences such that their sum is not a legal

code word sequence. In order to generate a linear FS code the

following well-known theorem in linear algebra can be used:

Theorem 3 (without proof): If C is a vector space and S is a

proper subspace of C, then there exists a subspace W of C
such that

S+W=C

sn w = {0}

dimS+dimW = dimC

The following discussion describes a way to generate a

linear FS code. The labeling of an FS code can be divided into

two parts: (1) generation of labels to the branches in the

state diagram; and (2) assignment of cosets to the labels.

Part 1 was taken care of by using a convolutional encoder to

generate labels to the state diagram of the FS code. For

part 2, the method proceeds as follows. Let C be the parent

(n, k) code. Let S be an (n, k I ) subcode of C. By Theorem 3.

there exists a subcode W of C (W is an [n, k - k I ] code) such
that

S+W=C

Sn W = {Q}

dimS+dim IV = dimC

The 2 k-k, cosets are constructed by adding each word in

W to S. That is,

_w+S V_wEW

Note that the set of all binary k - kl-tuples is isomorphic

to W. Let {_wo, _w1..... --Wg-k1-1)be a basis of IV. Let bo,

bl .... , bk-k,-I be the k- k I output bits of the convolutional
encoder. Let the coset assigned to the branches labeled by the

binary (k - kl)-tuples bo, b 1..... bk-k,-I be denoted by

L (b o, b I ..... bk_kt_l ). Let us assign

L(bo, b I ..... bg_k_ 1) = S+ {bo_Wo+b l_w1 +...

+ bk_kl_ 1 W-k-kx-1 )

This assignment of cosets to the branches in the state diagram

guarantees the linearity of the FS code.
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A general construction for finite-state (FS) codes is applied to some well-known block

codes. New subcodes of the (24,12) Golay code are used to generate two optimal FS

codes with dfree = 12 and 16. A partition of the (16,8)Nordstrom-Robinson code yieMs

a d¢_ee = 10 FS code. Simulation results are shown and decoding algorithms are briefly
discussed.

I. Introduction

Future deep-space communication systems will take advan-

tage of powerful error-correcting coding schemes to keep power

• and antenna size requirements within acceptable bounds. Such

codes can be found by computer search or, as considered in

this article, by constructions based on known codes.

In a previous article [1] it was shown how some optimal

Finite-State (FS) codes can be constructed from known block

codes. This article considers new FS codes based on other

block codes and describes performance results obtained by

simulation.

II. Codes Derived From the (24,12)
Golay Code

The basic idea developed in [1] consists in choosing an

(n, kl) block code C 1 with minimum distance all, and then

decomposing C 1 into the disjoint union of cosets generated by

an (n, k2) subcode C 2 of C1, with minimum distance d 2 . By

properly assigning these cosets to the edges of a 2 m-state com-

pletely connected graph, it is possible to construct an (n, k, m)

FS code, with k = m + k 2 and dfree _ min (d2,2dl).

The (24,12) Golay code could be an interesting candidate

for this construction provided that it contains a subcode with

minimum distance d 2 larger than d 1 = 8. The following theo-

rem shows that such a subcode does indeed exist.

%..

Theorem 1. The (24,12) Golay code has a (24,5) subcode with

minimum distance 12.

Proof: The proof is based on the Turyn construction of the

Golay code (p. 587 of [2]). LetA be the (7,3) code with code

words consisting of (0,0,0,0,0,0,0) and the seven cyclic shifts

of (1,1,0,1,0,0,0). Then the (7,4) code H = A L)A, where the

bar denotes the complemented code words, is the (7,4) Ham-

ming code. Similarly, consider the code A* obtained by revers-

ing the order of symbols inA, and the codeH* =A* L) A*. Let
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Table 1. Transfer function matrix to generate a completely

connected state diagram with 8 states and 16 labels

1 0 D 1

G(D) : D 1 0 0 df = 2 branches

0 D 1 0

Table 2. Transfer function matrix to generate a non-completely

connected state diagram with 64 states and 16 labels

1 +D 0 D 2 1

G(D) = D 2 1 + D 0 0 dr- = 3 branches

0 D 2 1 +D 0
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C and C* be (8,4) codes obtained by adding a parity check bit

to H and H*. Then C and C* have Clmin = 4, and the code G
consisting of all vectors

la+xlb+xla+b+xl, a, bEC, xEC* (1)

is the (24,12) binary Golay code with dmi n = 8.

Let B be the subcode of C consisting of the two code words

(0,0,0,0,0,0,0,0) and (1,1,1,1,1,1,1,1). Then the construction

in (1) with a, b E B and x E A* generates code words of the
form

Ixlxlxl, Ixl_l_'l, Ix-lxl_l, Ix'lx'lxl (2)

Code words taken from two distinct subcodes of the four sub-

codes above are at minimum distance 8 + 8 = 16 for fixed x,

and at distance 4 X 3 = 12 forx :_y EA*. Code words in the

same subcode are at minimum distance 4 X 3 = 12. Therefore,

by using all 8 possible choices for x, we have constructed a

(24,5) subcode of the Golay code with dmi n = 12. •

Previously known (24,5) subcodes of the Golay code have

dmi n = 8 [3], [4]. The (24,5) subcode just described can be

represented on a trellis as shown in Fig. 1, where each edge x

or _ corresponds to eight bits. Figure 1 consists of the union

of 8 cosets Di, i = 0, 1 ..... 7, given by (2) withx EA*. Each

coset has 4 code words and is represented by a trellis as shown

in Fig. 2. This observation leads to the following result.

Corollaryl. The (24,12) Golay code has a (24,2) subcode

with minimum distance equal to 16.

Proof: This follows directly from Expression (2) with x =

(0,0,0,0,0,0,0,0). Figure 2 shows the trellis representing the
(24,2) subcode with 4 code words. •

Since there are 128 (24,5) cosets in the Golay code, it is

possible to construct a non-catastrophic [1] FS code with up

to 64 states on a completely connected graph. By this con-

struction we obtain a (24,11,6) FS code with dfree = min (12,

2 × 8) = 12. For this code, since d 2 is strictly smaller than
2d t, it is also possible to say that there are exactly 30 error

events at distance 12, the number of code words of the (24,5)

subcode of weight 12. Similarly, by using the 21° (24,2)

cosets, we can construct a (24,11,9) FS code with dfree =
min (16,2 X 8) = 16. These new codes are both optimal in the

sense that they achieve the largest possible free distance, as

predicted by the Plotkin bound for FS codes [1 ].

III. Codes Derived From the Nordstrom-
Robinson Code

In [1] a (16,7,2) FS code was constructed starting from the

nonlinear (16,8) Nordstrom-Robinson code with dmi n = 6,

which is the union of 8 particular cosets of the (16,5) first-

order Reed-Mfiller code with dmi n = 8.

Given that the Nordstrom-Robinson code has many pairs

of code words at distance 10 and that a (16,k) code may have

dmi n = 10 only ifk _<2 (by the Plotkin bound), it is interesting
to see if the Nordstrom-Robinson code can be split into 64 sets

of 4 code words, each with dmi n = 10. The following theorem
proves that this is true.

Theorem2. The (16,8) Nordstrom-Robinson code can be

partitioned into 64 sets, each having dmi n = 10.

Proof: The Nordstrom-Robinson code is the union of

8 cosets of the (16,5) first-order Reed-MiJller code. Let the

8 coset leaders be denoted by a i and bi, i = 0,1,2,3. Then

ao = 0 and the other coset leaders can be taken to be the
following seven bent 1 functions of four Boolean variables

XrX2,X3,X 4 (problem 21, p. 476 of [2]),

a I =xix 2 +XlX 3 +x2x 3 "lx2x 4

a 2 =xix 2 -I-x3x 4

a 3 =x1x 4 +x2x 3 +x2x 4 +x3x 4

b 0 =x1x 2 +x1x 3 +x1x 4 +x2x 4

b 1 =XlX 2 +x1x 4 +x2x 3

b 2 =x1x 3 +x2x 4 +x3x 4

b 3 =X1X 3 +X1X 4 +X2X 3 +X3X 4

If instead the coset leaders are taken to be:

A0=0

A t =a 1 +x 3 + 1

A 2 =a 2 +x 2 +x 4 + 1

A 3 =a 3 +x 1 +x 2 + 1

B o = bo + x 2 + x 3 + x 4

B 1 = b 1 +x] +X 4

B 2 = b2 + x 3 + x 4 + 1

B 3 = b3 +x 1 +X 2 +x 3 + 1

1These Boolean functions are so called because they are in some sense
furthest away from linear functions.
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then dJst (A i, Aj) = 10, dist (Bi, B/) = 10, and dist (Ai, BI) = 6
for all i and j, i q: ]. Then, for each word w in the (16,5) first-

order Reed-Mfiller code (,40 + w,A 1 + w,A 2 + w,A 3 + w)

and (B o + w, B 1 + w, B 2 + w, B 3 + w) are subsets of the
Nordstrom-Robinson code with distance 10. There are 64

such subsets and they exhaust the Nordstrom-Robinson

code. •

Table 1 shows the code words of the (16,5) first-order

Reed-MiJller code and the 8 coset leaders that generate the

64 subsets used for the FS code construction. By assigning

the 64 subsets to the edges of a 32-state completely con-

nected graph a (16,7,5) FS code can be constructed. This

code has dfree = rain (2 × 6,10) = 10, which meets the Plotkin
bound.

IV. Simulation Results and Decoding
Algorithms

An existing software simulation for FS codes has been

adapted to the newly found codes. Simulation results showing

the probability of bit error versus EJN o are given in Fig. 3.

The (24,11,6) FS code with dfree = 12 and the (16,7,5) FS

code with dfree = 10 are compared for reference to the (2,1,6)
Voyager convolutional code.

These results are obtained by a soft, maximum-likelihood

decoder based on the Viterbi algorithm. The decoder performs

two basic steps:

(1) Each received word (24 or 16 symbols) is compared to
the code words in each coset (128 or 64) and the clos-

est code word in each coset is stored together with its
distance.

(2) At each state, the decoder further selects the closest

code word among those chosen in step 1 for the cosets

assigned to branches reaching that state.

For the (24,11,6) code, the total number of bit operations

per decoded bit involved in the decoding process is (24/11) 212,

where 212 is the total number of branches in one stage of the

decoder trellis. It is interesting to note that the same number

for the Golay code is (24/12) 212, which is very close, but the

FS code has dfree = 12 compared to a dfree = 8 of the Golay
code. Similarly, the decoding of the (16,7,5) code involves
(16/7) 210 bits per decoded bit.

V. Conclusion

In this article we have described FS codes based on parti-

tions of the Golay and Nordstrom-Robinson codes, which did

not appear in the literature.

The comparison of these new codes to known codes, block

and convolutional, is complicated by the fact that both the

performance and the decoding complexity must be taken into

account, and the complexity is intimately related to the partic-
ular hardware architecture used for the decoder. We feel that

the proposed codes may take greater advantage of parallel
VLSI architectures than conventional convolutional codes

with no structure. Also, the trellis representation of cosets as

in Figs. 1 and 2 can be used to reduce the number of compari-
sons to select the closest code word with methods similar to

those described in [3].

Figure 4 summarizes the present knowledge on FS codes by

showing the Plotkin or Hamming bound (whichever is tighter)
on the free distance achievable for a given encoder memory

and for two classes of FS codes, the (24,11,m) and the (16,7,m)

classes. The (16,7,2) code has been reported in [1]. The Voy-

ager code is also shown for comparison as a member of the

(2,1,m) class of convolutional codes. More work needs to be

done in constructing yet more powerful FS codes, especially

those based on graphs that are not completely connected.
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Table 1. Code words of (16,5) first-order Reed-

Mbller code and coset leaders

O000000000000000w o

1111111111111111w]

0000000011111111w 2

11 1 11 1 1 100000000w 3

000011 1 1000011 llw 4

111 10000111 lO000w 5

0011001100110011w 6

llO0110011001100w 7

OlOlOlOlOlOlOlOlw 8

lOlOlOlOl0101010w 9

0 0 0 01 1 1 1 11 1 10 0 0 0 Wlo

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 wll

0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 w12

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 w13

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 w14

1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 w15

1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 w16

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 w17

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 w18

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 w19

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 w20

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 w21

1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 w22

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 w23

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 w24

1 0 0 1 1 0 0 11 0 0 1 1 0 0 1 w2s

0 1 1 0 0 1 1 01 0 0 1 1 0 0 1 w26

1 0 0 1 1 0 0 1 0 1 1 0 0:1 1 0 w27

1 0 0 1 01 1 0 1 0 0 1 0 1 1 0 w28

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 w29

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 w30

0 1 1 01 0 0 1 1 0 0 1 0 1 1 0 w31
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It is well known that the Euclidean algorithm or #s equivalent, continued fractions,

can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS)

code. It is shown in this article that this algorithm can be used for both time and trans-

form domain decoding by replacing its initial conditions with the Forney syndromes and

the erasure locator polynomial. By this means both the errata locator polynomial and the

errata evaluator polynomial can be obtained with the Euclidean algorithm.

With these ideas, both time and transform domain Reed-Solomon decoders for cor-

recting errors and erasures are simphfied and compared in this article. As a consequence,

the architectures of Reed--Solomon decoders for correcting both errors and erasures can

be made more modular, regular, simple, and naturally suitable for VLSI implementation.

I. Introduction

The Euclidean algorithm for solving the key equation for

decoding Bose-Chaudhuri-Hocquenghem (BCH) and Goppa

type codes was first developed by Sugiyama etal. [1]. The

authors [2], [3] derived a fast decoding of Reed-Solomon

(RS) codes using the continued fraction, which is closely

related to the Euclidean algorithm. Brent and Kung [4] were

the first to suggest a systolic array architecture for computing

the greatest common divisor (GCD) of two polynomials.

Through the use of these ideas, a pipeline structure for a trans-

form domain decoder was developed to decode errors of RS

codes [5]. An important ingredient of this design is a modi-

fled Euclidean algorithm for computing the error locator

polynomial.

The computation of inverse field elements is completely

avoided in the above-mentioned modification of Euclid's

algorithm. Recently, the authors [6] proposed that a recursive

algorithm could be used to perform this modified Euclidean

algorithm. An important advantage of this new recursive algo-

rithm is that the entire systolic array needed to perform

Euclid's algorithm requires substantially less silicon area than

the pipeline version of the modified Euclidean algorithm given

in [5].
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Forney [13] defined an errata locator polynomial using

what are now called Forney syndromes to correct both errors

and erasures. Blahut [7] showed that the errata locator poly-

nomial can be computed directly by initializing Berlekamp's

algorithm with the erasure locator polynomial.

Recently Eastman [8] suggested that the errata evaluator

polynomial can be computed directly by initializing Berle-

kamp's algorithm with the Forney syndrome polynomial. This

new, simplified decoding procedure is proved in [9]. By this

technique, it is possible to compute the errata locator polyno-
mial and the errata evaluator polynomial simultaneously from

the Euclidean algorithm. This new RS decoder uses both the

erasure locator polynomial and the Forney syndrome polyno-

mial as initial conditions for the Euclidean algorithm.

It is shown and proved in [9] that the modified Euclidean

algorithm mentioned above can be used to solve the Berle-

kamp-Massey key equation for the errata locator polynomial

and the errata evaluator polynomial directly and simultane-

ously. By this means a new, simplified pipeline architecture
for both the time and transform domain decoders can be

developed for correcting both errors and erasures of RS codes.

Such a decoding technique can be faster and simpler than

previous methods [15], [10].

In this article, it is found that the VLSI implementation of

the transform domain decoder is simpler than that of the time
domain decoder. However, for a long RS code (10 bits or

larger), due to the large size of the inverse transform unit

needed in the transform decoder, the VLSI area needed to

implement the transform domain decoder can be substantially
larger than that needed for the time domain decoder. For

moderately long codes, such as the 8-bit (255,223) RS code

used in the concatenated coding system for NASA's Voyager
mission [11 ], the transform domain decoder is still simpler
than the time domain decoder.

The above-mentioned NASA coding system is called the

"baseline" system. It uses a (7, 1/2) convolutional code as

its inner code and an 8-bit (255,223) RS code as its outer

code. It is shown [12] that this system achieves a bit-error

rate (BER) of 10 -6 at a bit signal-to-noise ratio (SNR) of
2.53 dB.

As mentioned above, the time domain decoder is more

efficient in area than the transform domain decoder for very

long RS codes. One such example is the long, 10 bits/symbol

(1023, 959) RS code presently being considered for very deep

space probes. If this code is concatenated with a (15, 1/5)
convolutional code, it achieves a BER of 10-6 at an SNR of

0.5 dB [12]. Evidently the new NASA concatenated coding

system provides a 2 dB improvement over the present baseline

system. It is for this reason and many other applications that

it is important to develop an efficient, VLSI implementable,
time domain RS decoder.

II. The Time Domain Decoder for RS Codes

An algorithm is developed in [15] for time domain decod-

ing of RS codes to correct both errors and erasures through
the use of continued fractions or their equivalent, Euclid's

algorithm. This algorithm is a modification of the Berlekamp-

Forney method [13], [14]. In this algorithm, the continued

fraction algorithm is used to find the error locator polyno-

mial from the remainder of the formal power series for the

Forney syndrome. The disadvantage of this algorithm is that

after the error locator polynomial is obtained by continued

fractions, two polynomial multiplications are needed to com-

pute the errata locator polynomial and the errata evaluator

polynomial from the known error locator polynomial.

In this section, the above-mentioned algorithm is modified
to correct both errors and erasures in the time domain decod-

ing of RS codes by the use of the Euclidean algorithm. In this

new algorithm, the Euclidean algorithm is used to solve the

Berlekamp-Forney key equation for the errata locator polyno-

mial and the errata evaluator polynomial directly and simulta-
neously. The advantage of this algorithm over previous methods

[15] is that separate computation of the errata locator poly-

nomial and the errata evaluator polynomial, which is usually

needed [15], can be avoided. This new decoding algorithm

is highly suitable for both VLSI and software implementation.

First, let GF(2 m) be a finite field of 2 m elements. Also, let

N -- 2 rn - 1 be the length of the (N,1) RS code over GF(2 m )

with minimum distance d, where I =N- (d- 1) denotes the

number of m-bit message symbols and d - 1 denotes the num-

ber of parity symbols such that d - 1 is either an even or an
odd integer. The following five vectors are defined as:

c = (%,c 1 ..... CN_l) , code vector

r = (?'o, F1 ..... FAr_ 1 ), received vector

e = (eo, eI .... , eN_l) , error vector

u = (Uo, u1 ..... UN_I) , erasure vector

fi = (fro, ffl ..... tSN_l), errata vector

These vectors are related by _ = e + u and r = c + u + e.

Suppose that t errors and v erasures occur in the received

vector r, and assume that v + 2t _<d - 1. Next let a be a primi-

tive element in GF(2 m ). Then 3' = a i is also a primitive element

in GF(2m), where (i,N) = 1.
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To minimize the complexity of an RS encoder it is desir-
able that the generator polynomial be symmetric. If _¢is a root

of the code's generator polynomial, it is shown [16] that the

generator polynomial g(x) is symmetric if and only if

b+(d-2) d-I

g(x) -- I] (x-_') -- _ gy (2)
i=b i=O

where go = ga-1 = 1 and b satisfies the equality 2b + d - 2 =
2 m - 1. The syndromes of the code are given by

N-1

S(b-1)+k = Z Ui 7i(b-l+k) =

i=0

v+ t

= Z Y'X'(b-1)+k] ]
]=1

N-1

(ui + ei) "ri(t'-l+k )
i=0

for 1 _<k_<d-1 (2)

where X i is either the ]th erasure or error location, and Y/is
either the ]th erasure or the error magnitude. Define the set

A = {XilX i is an erasure location) and X = {XilX i is an error
location). Define the syndrome polynomial

d-1

S(X) = E S(b-n+k xk-1 (3a)
k=l

Then it is not difficult to show (see [14] ) that

d-I v+ t y.xt?
LI

S(x) = Z S(b-x,+k xk-1 = Z (1 X.x)
k=l ]=1

v+t y.X.x b+a-1

-Z 11
(1 -Xix)

]= 1

(3b)

Following [14], we define four different polynomials as
follows:

The erasure locator:

V

A(x)= FI (1-xx) --E (1-x,x)=E (-1);
xleA 1=I 1=o

(4a)

where A o = 1.

The error locator:

X(x) = H (I-X.x)
X.eh

/

t t

= _ (1-X/x) = ___ (-1)/Xix/
]=I j=O

(4b)

where Xo = 1.

The errata locator:

V+t v+t

r(x) = A(x)X(x) = H (2 -X.x) = Z (-l)/5'x!
j=l /=0

(4c)

where 7"0 = I.

The errata evaluator:

v+t

(4d)

In terms of the polynomials defined above, Eq. (3b)becomes

v+t

(5)

From Eq. (5), one obtains the congruence relation,

S(x)r(x) - A (x) mod x d-1 (6a)

It is shown [9] that Eq. (6a) can be solved to yield

A(x) modx a-I (6b)s(x) =- X(x)A(x)

It is well known, e.g., see [15], that the maximum num-
ber of errors in an RS code which can be corrected is

I_(d - 1- v)/2_l where [x_J denotes the greatest integer less

than or equal to x, i.e., the principal part ofx. We now define

the Forney syndrome polynomial.

Definition 1: The Forney syndrome polynomial is defined

by

T(x) = S(x)A(x) rood x a-I (7)
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By Eq. (7), the key in Eq. (6b) for X(x) and A (x) is:

T(x) A (x) - a-1
- X(x---)moo x

where

deg (X(x)} _< [_(d-1-v)/2]

and

deg {,4 (x)} _< t_(d + v - 3)/23

(8)

It is shown in the following theorem that the errata evalu-

ator polynomial A (x) and the errata locator polynomial r(x)

can be obtained simultaneously and simply from knowing

T(x) in Eq. (7) and the new key equation in Eq. (8), which
takes into account both errors and erasures.

Theorem 1: Let T(x) in Eq. (7) be the Forney syndrome

polynomial of a t-error and v-erasure correcting RS code under
the condition v + 2t _< d - 1 where d - 1 is either an even or

an odd integer. Consider the two polynomials M(x) = x a-1
and T(x) = S(x) A(x) mud x ct-1 . Then the Euclidean algo-

rithm for polynomials on GF(2 m ) can be used to develop two

finite sequences Rs(x ) and rs(x) from the following two recur-
sive formulas:

and

rs(x) = (-qs-, (x)) r_l (x) + rs_2 (x) (9a)

Rs(X) = Rs_ 2 (x) - Cls_1 (x) Rs_ 1 (X) (9b)

for (s = 1,2 .... ), where the initial conditions are ro(X ) =

A(x), r_ 1 (x)= 0, R_ 1 (x) = M(x), and Ro(x) = T(x). Here

qs-1 (x) is obtained as the principal part of Rs_ 2 (x)/Rs_ 1 (x).

The recursion in Eq. (9) for Rs(x ) and rs(x ) terminates when

deg {Rs(x)} _<v + w- 1 for the first time for some value s = s'.
Let

G,(x)
A(x) - A (lOa)

q,(x)
T(x)- A (lOb)

and

Also in Eq. (10), A = rs,(0 ) is a field element in GF(2 m )

which is chosen so that r o = 1. Then A (x) and r(x) in Eq. (10)

are the unique solutions of

(10c)A (x) - T(x) r(x) mud x a-1

where both the inequalities, deg {r(x)} _< L(d + v - 1)/23 and
deg {A (x)} _< L(d + v - 3)/2_1, are satisfied.

Proof: Theorem 1 is a proof [9] that the idea in [8] is
correct.

The roots of r(x) are the inverse locations of the t errors

and v erasures. These roots are most efficiently found by the

Chien search procedure. By Eq. (4d) it is readily shown that
the errata values are

Yk = (xb_ 1 Tt X; 1 ) forl<_k<_v+t (11)

where r'(X_ 1) is the derivative with respect to x of r(x),

evaluated at x = X_ 1 .

The overall time domain decoding of RS codes for correct-

ing errors and erasures using the Euclidean algorithm is sum-
marized in the following steps:

(1) Compute the transform of the received m-tuple vector

over GF(2 m ) from Eq. (2). Next, calculate the erasure

locator polynomial A(x) from Eq. (4a) and define

deg (A(x)) = v.

(2) Compute the Forney syndrome polynomial from T(x)

in Eq. (7).

(3) Determine the errata locator polynomial fix) and

errata evaluator polynomial A (x), where 0 _< v <

d - 1, by applying the Euclidean algorithm to x a-I

and T(x) as given by Eq. (7). The initial values of the

Euclidean algorithm are ro(X ) = A(x), r_1 (x) = 0,

R_l(x)=x d-l, and Ro(x)=T(x ). The recursion in

Eq. (9) for Rs(x ) and rs(x ) terminates when deg
(Rs(x)} <<-L(d + v - 3)/23 for the first time for some

value s = s'. Finally, compute fix) and A(x) from

Eq.(10). For v = d - 1, set rOe) = A(x) and A(x) =

T(x).

(4) Compute the errata values from Eq. (11).

To illustrate the time domain decoding procedure for

correcting errors and erasures, an elementary example of an

RS code over GF(2 4) is now presented. The representation of

the field GF(2 4) generated by the primitive irreducible poly-

nomial g(x) =x 4 +x + 1 is given in Appendix A.

Example 1 : Consider a (15, 9) RS code over GF(2 4) with

minimum distance d = 7. In this code, v erasures and t errors
under the condition 2t + v _< d - 1 can be corrected. In order
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to simplifythisexample, let "t = a and b = 1. Thus, the genera-

tor polynomial of such a (15, 9) RS code is defined by

6

g(x) = ]-I (x-ai) = x6 +'_l°xS +'_14x4
t=1

+ Ot4X3 + Ot6X2 + ot9 X + ot6

The syndromes S_ for r are

14

Sk = E rnotnk = ot7(ot3)k +t_2(tyT)k +otll(otlO)k

n=O

for 1 _<k_<6

Assume the message symbols are

](X) = OtlOxI4 +OtI2xI3 +_8X12 +otSxll +Ot6xIO

+ OtI4x9 + OtI3x8 +allx7 + Ot9X6

The encoded code word, which is a multiple ofg(x), is

C(X) = OtlOx14 +0t12X13 + Ot8XI2 +OtSXI1 +ot6X 10

+ ¢v14X9 + Otl3x8 + Otllx7 + Ot9X6 +X 5

+otx 4 +ot2x3 +ot6x2 +otl2x +ot8

Written as a vector, the code word is

C = (ot 10, ot 12, ot8, ot 5, ot6, ot 14, ot 13, ot 11, ot9, or0, iv,

0/2,ot6,otl2,0_ 8)

Assume the erasure vector is

u = (O,O,O,O,O,O,O, ot2,0, O,O,O,O,O,O)

and the error vector is

e = (O,O,O,O, otll,o,o,o,o,o,o, otT,0, O,O)

(12)

(13)

Then the errata vector is

= u+e = (O,O,O,O,ot11,0,O,ot2,0,O,O,otT,0,O,O)

(14)

Assume the received vector is

r = C+U = (otlO,otl2,ot8,ot 5,ot,Otl4,otl3,ot 9,

Or9 , otO, ot, 0_12, ot6, ot 12, ¢_'s ) (15)

This yields S I =ot0 $2 = otl3, $3 = otl4, $4 = otll, S5 =or,

and S6 = 0. Thus, the syndrome polynomial is S(x) = ot° _
otl3x + otl4x2 +otllx3 +OtX 4 +Ox s

The erasure locator polynomial is A(x) = (1 + otTx). In this

example, the maximum erasure correcting capability is

L(d - 1 - v)/23 = k(7 - 1 - 1)/23 = 2

By Eq. (7), one obtains the Forney syndrome polynomial as

T(x)=A(x)S(x) =(1 + otTx) (1 +ot13x + ot14x 2 +otHx 3

+otx 4 +0x5) modx 6

(0X 6 + ot8X $ + ot9X 4 + otX 3 + otl2x2

+ otSx + a °)roodX 6

= ot8X 5 + ot9X4 + otX 3 + OtI2x 2 + ot5X + ot 0

(16)

In Eq. (16), the coefficients of T(x), To = oto, Tx = ors, 7,2 =
ot12 , T3 = or, T4 = ot9, and T5 = a 8 are the Forney syndromes.

The Euclidean algorithm is applied next to polynomial

x a-1 and T(x) in Eq. (16). By this means, polynomials r(x)

and A (x) are determined next by use of the Euclidean algo-

rithm. This is accomplished by the recursive Eqs. (9a) and

(9b) illustrated in Table 1, where initially R_x (x) = x d-1 =

x 6 and Ro(x ) = otSx s + ot9X 4 + OtX 3 + 0t12X2 + 0_Sx + 1.

From Table 1, one observes that deg {Rs(x)) = deg (R 2 (x)) =
2 <<.L(d + v - 3)/21 = 2. Thus, the computation terminates
at s' = 2, and

R2(x ) = otTx2 +otx+ot 2 (17a)

and

T2(X) = Ot7X 3 +OtlaX 2 +ot4X +or 2 (17b)
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By Eqs. (10a) and (10b), one has

T(x) =__1 72(x ) = otSx3+anx2+a2x+l
ot 2

(18)

and

1

A(x) = _- R2(x ) = aSx 2 +514x+ 1
(19)

By using Chien's search, the roots of r(x) constitute the set

{a -7, ot-3, a-l°). The derivative with respect to x of 7(x) in
Eq. (18) is 7'(x) = aSx 2 + _2. Thus, the errata values are

AX_-1 a(_ -7) as(5-_)2 +_4(5-7)+ 1
Y1 - - - = 52

7'(X -1) 7'(r¢ -7 ) 0_5 (or-7) 2 +0l 2

AX; 1 0t5(0t-3) + 0_14(0t-3) + 1 57

7,(x2l ) _s(_-3)2 +_

and

XX31 0_5 (0_-1°) 2 + 0_14(_-10) + 1
I3 - - = 511

T'(x;l) 0t5 (tv-XO)2 + _2

III. The Transform Decoder for RS Codes

The transform decoder of Gore and Mandelbaum [17],
[18] was developed further in [10] to correct both errors and

erasures. This decoding procedure was based on the algorithm

originally invented by Forney [13] (also see [10]). By the
above-mentioned Euclidean algorithm, the transform domain

decoding procedure in [10] can be simplified further.

By the same procedure used in the time domain decoder,

one can obtain the errata locator polynomial given in Eq. (4c).
Hence,

7(X71) = 1 + (-1)1"1(X/-1) + (-1)272 (X/-1)2

+... + (-1) v+' %+, (x71 y+' = o

for 1 < i _< v + t (20)

Multiplying Eq. (20) by YiX/(b-1)+k yields

FiX fb-1)+ k - T1 r.s. (b-1)+k-1

_+l riX_b-O+k-(v+') = 0+... + (-1) 7v+ t

(21)

Summing Eq. (21) over i for 1 < i < v + t produces

v+t v+t

E r, _71F_,
1=1 1=1

v+t
v+t+... +(-1) =o

From Eq. (22), one has

s(b_,+ _ - 71s(b_l)+__,

+... + (-1) v+t 7t+vS(b_l)+k_(v+t) =0

(22)

(23)

Hence, in general,

e( b-1)+ k - "1"1Ecb -l )+k-I

+. • • + (-1) t+v 7t+vE(b_l)+k_(v+t ) = 0

for k _ d (24)

are the recursive equations for Ei, the transforms of the errata

pattern, where initially Eb = Sb ,Eb+ 1 = Sb+ 1 ..... Eb+d_ 2 are
known from the prior syndrome calculation.

From Eq. (24), one obtains the rest of the transform of u,
i.e., the S_ for 0 < £ _<N - 1'. The amplitude fi vector is found

by taking the inverse transform over GF(2 m) of S_, 0 < £ <
N - 1. Finally, the original m-tuple code vector can be obtained
by subtracting fi from the received vector r.

Let us now recapitulate the above transform decoding algo-

rithm of RS codes for correcting both errors and erasures,

using transforms over GF(2 m ) and the Euclidean algorithm.
This procedure is composed of the following five steps:

(1) Use step 1 in the time domain decoder.

(2) Use step 2 in the time domain decoder.

(3) Use step 3 in the time domain decoder.

(4) Compute the rest of the transform of the errata vector

by the use of Eq. (24).

(5) Invert the transform to recover the errata vector using

the fact that SO = Su . Then obtain the corrected code
vector.
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To illustrate the transform domain decoder for correcting
errors with erasures, the data for the (15, 9) RS code over

GF(2 4) used in Example 1 is again used.

Example2: Consider the (15,9) RS code over GF(2 4)

with d = 7. For this code, the erasure, error, errata, and

received vectors are given by Eqs. (12), (13), (14), and (15),

respectively. By Eq. (18), the errata locator polynomial is

r(x) = ro + rlx + r2x2 +tax 3 = 1 + Ol2 X + olll x2 + Ot5 X3

where ro = 1, r1 = a 2 , r2 = ot 11 , and r3 = a s .

By Eq. (23), the rest of the transform of the errata vector is

S k = ol2Sk_l+olllSk_2+ol5Sk_3 forT_15

(25)

That is, S7 = a 13, S s = t_13, S9 = off, Slo = ot3 , Sll = tv s ,

$12 = t_13, $1a = _ s, $1a = ct s, and SO = 1.

The inverse transform ofS k is

15-1

n=O

for 0_<k_< 14

The result is fi = (0, 0, 0, 0, al 1,0, O, t_2 , 0, 0, 0, t_7 , 0, 0, 0).

The corrected code is thus

c = r-fi = (otl°,oL12,0t8_ot5,0_,a'14, 0/13,0t9,0t9,_0,Ot,

O_12,_6,0t12,0t 8)

- (0, 0, 0, 0, all, 0, 0, Or2,0, 0, 0, Or7,0, 0, 0)

= (otlO 0t12,0t8 0t5 0/6,0_14,0t13 o/ll,t_9_O/0,(_,

O/2,tv6,0tl2,0t 8)

IV. A Comparison of VLSI Architecture of
the Transform Decoder and the Time
Domain Decoder

The block diagram of a (255,223) RS time domain decoder

is depicted in Fig. 1. Figure 2 shows the block diagram of a

(255,223) RS transform domain decoder. Each block diagram

can be separated into two parts, indicated by broken lines, as

shown in both Figs. 1 and 2. The first part, labeled as 'T' in

both block diagrams, has similar VLSI architecture. The major

functional units in this part are (1) the syndrome computa-
tion unit; (2) the power calculation unit; (3) the power expan-

sion unit; (4) the polynomial expansion unit; and (5) the

l(d + v - 3)/2J generator. Also included in this part are some

delay registers. The lengths of the delay registers may not be

equal in these two decoder architectures, but since they con-

tain only replicated register cells, they can be considered
identical in architecture.

Figure 3 shows the block diagram of the syndrome compu-

tation unit. This unit accepts the received messages and com-

putes their syndromes. There are 32 syndrome subcells in a

(255,223) RS decoder. Each subceU depicted in Fig. 3 per-

forms the operation as S i _ (S i + rioti), where "_-" denotes

the operation "is replaced by." The Berlekamp multiplier is

used in this syndrome unit due to its simplicity in VLSI

design [19]. The computed syndrome polynomial is labeled

as S(x) in both Figs. 1 and 2. In the time domain and trans-
form domain decoders, the coefficients of S(x) are fed in

parallel to the polynomial expansion unit to compute the
Forney syndromes.

The power calculation unit converts the received 1 's and O's

into a sequence of ak's and O's, where a is a primitive element
of the finite field over which the RS code is defined. These

received l's and O's indicate the occurrence or nonoccurrence,

respectively, of an erasure at a specific location. Figure 4
shows the block diagram of the power calculation unit. Since

the maximum erasure correcting capability of a (255,223) RS

decoder is 32, only 32 symbol latches are needed to store the
locations of all the correctable erasures.

A detection circuit for detecting the occurrence of erasures

is included in the power calculation unit. If an erasure occurs

at the kth location, its corresponding symbol c_k is calculated
and latched. This ak's sequence is fed to the polynomial

expansion circuit, to the power expansion unit, and to the
I(d + v - 3)/2J generator.

The power expansion unit converts the a k's sequence into

an erasure locator polynomial A(x) which has ak's as its

roots. Figure 5 depicts the block diagram of this unit. The

erasure locator polynomial A(x) is fed to the modified GCD
unit as one of the initial conditions.

A generator is used to compute [_(d + v - 3)/21. This is

shown in both Figs. 1 and 2. The output of this generator is

sent to the modified GCD unit and used as a stop indicator for
Euclid's algorithm

Figure 6 presents a block diagram of the polynomial expan-

sion circuit. The Forney syndromes for either the time domain
decoder or the transform decoder are calculated in this unit.
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Figure 7 depicts the block diagram of the modified GCD

unit. As described previously in [6], a multiplexing scheme

can be applied to the modified GCD unit to reduce the num-

ber of cells needed. The polynomial A(x) together with the

Forney syndrome polynomial T(x) are the two inputs to the

modified GCD unit. The output of the modified GCD unit is

the errata locator polynomial r(x) and the errata evaluator

polynomial A (x). The error correcting capability of the code

is computed by 1(32 - v)/2].

The differing functional units of the time and transform
domain decoders are shown in the second half of Figs. 1 and 2

and are labeled as "II." One output of the modified GCD unit

of the time domain decoder, the errata locator polynomial

r(x), is fed to a Chien search unit and to another unit for com-

puting [x b-I r'(x)] -1 = [x 111r'(x)] -1, where b = 112 in this

design. The other output of the modified GCD unit of the time
domain decoder, the errata evaluator polynomial A(x), is fed

to the polynomial evaluation unit to perform the evaluation of

A (x). Figure 8 shows the block diagram of the polynomial
evaluation unit.

The [x 111r'(x)] -1 unit performs the calculation of one part

of the errata magnitude [6]. Figure 9 depicts the block dia-

gram of this unit. The product of the outputs of the polyno-

mial evaluation unit and the [xlllr'(x)]-1 unit forms *he

errata magnitude.

In the time domain decoder, the Chien search unit is used

to search for the error and erasure locations; for more details,

see [6]. The architecture of the Chien search unit is similar to

that of the polynomial evaluation unit, except there is a zero
detector at the end.

On the other hand, for the transform domain decoder

design, the output from the modified GCD unit is the errata

locator polynomial r(x). This output is fed to the transform

error pattern unit, along with the syndromes from the syn-

drome computation unit, to calculate the extended syndromes.
A new architecture for the transform of the error-pattern unit

is developed in Appendix A. The realization of this idea is

shown in the block diagram of the transform of the error-

pattern unit, given in Fig. 10.

The computation of extended syndromes, together with the

original syndromes, is sent to the inverse transform unit to
obtain the estimated error oatterns. Figure 11 shows the block

diagram of the inverse transform error-pattern unit. It is easy
to see that the architecture for the inverse transform unit is

similar to that of the syndrome computation unit except that
255 subcells are needed in the inverse transform unit while the

syndrome computation unit needs 32 subcells.

Clearly, the architecture of the transform domain decoder

tesign is simpler than that of the time domain decoder design.
This is because the transform 'domain decoder design needs

only two regular function blocks in part II of Fig. 2. However,

the time domain decoder requires three function blocks for

the implementation in part II of Fig. 1.

Furthermore, the inverse-transform unit in the transform

domain design contains 255 similar ceils in the (255,223) RS

decoder. It is estimated that these 255 cells occupy only a
moderate amount of silicon area, and that their geometric

arrangement can be regular and simple. Therefore, substantial

time for the design and test of such a VLSI chip can be saved.

However, the advantage of the transform domain decoder is

valid only for moderately short length RS codes. If long length

RS codes are used to enhance the system's performance [12],
the transform domain decoder needs a large inverse transform

block. This might cause a problem in the VLSI implementa-

tion. In general, if a GF(2 m ) field is used to define an RS

code, an inverse transform block composed of 2 m - 1 cells is
needed. Hence, the number of cells needed in an inverse trans-

form block increases exponentially with the integer m. How-
ever, the number of transistors needed in the time domain

decoder goes up only linearly as the integer m increases.

Therefore, for long length codes, the time domain decoder

is the more appealing approach. Although the computation

of the time domain decoder is more complex than that of the

transform domain decoder, for long RS codes the number of
transistors needed in a time domain decoder is substantially
less than that in a transform domain decoder.
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Appendix A

New Architecture for the Transform of the Error Pattern Unit

In this appendix, a VLSI architecture is developed to com-

pute the transform of the error pattern. Recently, Johnson

et al. [20] proposed a systolic array for computing a linear

convolution. Using a technique similar to that suggested by
Johnson et al., the transform of the error pattern in Eq. (23)

or Eq. (24) can be implemented in a systolic array. The advan-

tage of this method over the previous method in Fig. 15 of [5]

is that the long delay needed in the large XOR tree used for

summing all the terms in Eq. (23) is eliminated. Also, the zero

detectors needed in the previous design [5] are not required in
this new architecture.

To illustrate this new architecture, the data in Example 2

for a (15, 9) RS code are used here as an example. The recur-

sive equation to compute the remainder of the transform of

the error pattern is given in Eq. (25). The new design for
computing Eq. (25) is shown in Fig. A-1. In this figure, the

function of each cell can be described by a register transfer

relation of the type R i *- Ri+ x + Sg t_i. The input data are
sent to all the cells simultaneously.

To understand the operation of this circuit, assume initially

that all registers R i for 1 _< i _< 3 are set to zero. The control

signal C is high for 6 symbol clocks to allow data S l ,S2 .....
S6 to be fed into the circuit. The input data are also sent to

the output node. At the same time, the complement signal t_

of signal C is low to prevent the data stored in register R 1
from being sent to the output node. Note that one "clock

time" for one Galois field symbol equals 4 circuit clock times.

At the seventh symbol clock time the control signal C is
switched to low or zero so that C = 1. Therefore, the data

stored in register R 1, which equals S7 at that moment, is sent

to the output node and fed back to all basic cells. This pro-
cess continues until the rest of the transform of the error

pattern, i.e., $7, S s ..... Sis, is obtained. The detailed opera-
tion of this circuit is described in Table A-2.
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Table A-1. Representations of the elements of GF(2 4) generated by a 4 + a + 1 = 0

3 2 aO

0a 0 0 0 1

1 0 0 1 0

2
a 0 1 0 0

3
a 1 0 0 0

4a 0 0 1 1

5a 0 1 1 0

6a 1 1 0 0

7a 1 0 1 1

8a 0 1 0 1

9 1 0 1 0

lO
c_ 0 1 1 1

11a 1 1 1 0

12 1 1 1 1

13
a 1 1 0 1

14
a 1 0 0 1

Table A-2. The fifteen steps of the transform of the error pattern algorithm

Symbol

clock

time

R 1 R 2 R 3

aSSl alls I a2S1

a5S2 ass1 + alls2 alls1 + a2S2

a5S3 a5S2 + a11S3 a2S3 + alls2 + a5Sl = S 4

_5S 4 alls4 + a5S3 a2S4 + _11S3 + ass 2 = S 5

15 aSs14 a 1 IS14 + a5S13 _2S14+a 1 +_5S12 = S OIS13 = $15
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Mass is the most important fimiting parameter for present-day planetary spacecraft

design. In fact, the entire spacecraft design can be characterized by mass. The more effi-

cient the design of a spacecraft, the less mass will be required. The communications sys-

tem is an essential and integral part of planetary spacecraft. In this article, a study is pre-

sented of the mass attributable to the communications system for spacecraft designs used

in recent missions in an attempt to help guide future design considerations and research-

and _levelopment efforts.

The basic approach is to examine the spacecraft by subsystem and allocate a portion

of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft

into two parts, telecommunications and non-telecommunications. In this way, it is clear

what the mass attributable to the communications system is.

The percentage of mass is calculated using the actual masses of the spacecraft parts,

except in the case of CRAF. In that case, estimated masses are used since the spacecraft

has not been built. The results show that the portion of the spacecraft attributable to

telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF

(Mariner Mark 11) is 34 percent, 19 percent, and 18 percent, respectively. The large

reduction of telecommunications mass from Voyager to Galileo is mainly due to the use

of a deployable antenna instead of the solid antenna on Voyager.

I. Statement of the Problem

The task at hand is to separate the spacecraft into two parts:

telecommunications and non-telecommunications. The Voyager

spacecraft, for example, is made up of the 25 subsystems listed

in Table 3. l Normally, the Radio Frequency Subsystem (RFS),

the Modulation/Demodulation Subsystem (MDS), and the

S/X-Band Antenna Subsystem (SXA) are said to compose the

1Mariner Jupiter/Saturn 1977, Project Document 618-205, Functional

Requirements Book, vols. 1 and 2 (internal document), Jet Propulsion

Laboratory, Pasadena, California, 1977.

telecommunications system, i.e., the communications system

between the spacecraft and ground station. However, portions

of many of the other subsystems are directly related or neces-

sary to the support and function of these three subsystems.

Therefore, a method must be created that will take those

related portions of the other subsystems into account.

II. Analysis

The Voyager spacecraft is used here to illustrate the analy-

sis. This method will be used to obtain results for the other

spacecraft. We have already done so for the three chronologi-
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cally representative spacecraft Voyager, Galileo, and CRAF.

To obtain overall percentages, each subsystem is analyzed indi-

vidually. However, the same method of analysis cannot be
used on all the subsystems. The detailed Voyager weight list is
used for this calculation. 2

A subjective analysis of the Voyager spacecraft telecom-

munications system mass was previously conducted by
R. M. Dickinson. 3 This resulted in a figure of fully one-third

of the spacecraft mass. The present qualitative analysis,

resulting in a figure of 34 percent, concurs with and verifies
this conclusion.

The Radio Frequency Subsystem (RFS), Modulation/

Demodulation Subsystem (MDS), and S/X-Band Antenna
Subsystem (SXA) are the three telecommunications subsys-

tems; therefore all (100 percent) of their mass is allocated to
telecommunications.

The ten Science Instruments Subsystems (SCIs) are used for

the purpose of gathering scientific data. This is clearly non-

telecommunications, so none of the mass is allocated to
telecommunications.

The Pyrotechnic Subsystem (PYRO) and the Systems

Assembly Hardware (SAH) are clearly non-telecommunications,
so none of the mass is allocated to telecommunications. The

PYRO subsystem effects the launch vehicle/spacecraft separa-

tion, deployed booms, etc., while the SAH subsystem consists

of parts needed to assemble the spacecraft.

The Flight Data Subsystem (FDS), Computer Command

Subsystem (CCS), and Attitude and Articulation Control Sub-

system (AACS) are the three on-board computers. Since these

cannot really be broken into parts, the mass estimate is based
on how much computing power was devoted to telecommuni-

cations. An estimate given by G. W. Garrison 4 was approxi-

mately 10 percent of FDS, approximately 10 percent of CCS,
and less than 5 percent of AACS. The total FDS mass (19.3 2 kg)

includes the Reed-Solomon coder hardware (2.35 kg). This is

considered to be telecommunications mass. Thus, 100 percent

of 2.35 kg plus 10 percent of 16.97 kg (the total mass less

the RS coder) yields 4.05 kg, or 20.95 percent of the FDS

2j. M. Brayshaw, detailed weight tabulation computer printout (inter-
nal document), Jet Propulsion Laboratory, Pasadena, California,
August 18, 1977.

3R. M. Dickinson, interoffice memorandum to E. C. Posner, IOM
860326 (internal document), Jet Propulsion Laboratory, Pasadena,
California, March 31, 1986.

4G. W. Garrison, private communication, Jet Propulsion Laboratory,
Pasadena, California, July 14, 1986.

mass allocated to telecommunications. Ten percent of the

CCS mass and 5 percent of the AACS mass is allocated to
telecommunications.

The Data Storage Subsystem (DSS) is the tape recorder and

basically serves as a time buffer and provides functional redun-

dancy for the telecommunications system. Since it wholly

supports the telecommunications system, all (100 percent)
is allocated to telecommunications.

The Structure Subsystem (STRU), Cabling Subsystem

(CABL), Temperature Control Subsystem (TEMP), and

Mechanical Devices Subsystem (DEV) are handled differently.

For these four subsystems, the detailed equipment mass list

is examined (see footnote 2), and each item is sorted into the

categories of fully telecommunication, fully non-telecom-

munication, and partly telecommunication. The "partly tele-

communication" category is further subdivided into six cate-

gories: PWR (Power), CCS, FDS, AACS, PROP (Propulsion),

and DSS, depending on which subsystem they are related to.

Fully telecommunication includes any items related to the

RFS, MDS, and SXA subsystems, such as the High Gain
Antenna (HGA). Fully non-telecommunication includes those

items related to the SCI subsystems such as the scan platform
and magnetometer boom. This category also contains such

miscellaneous items as the phonograph record.

For each of the four subsystems, a percentage of the mass

in each of the eight categories is taken and then summed to-

gether. One hundred percent is taken for fully telecommunica-

tion, 0 percent for fully non-telecommunication, and for the

partly telecommunication categories, 10 percent of CCS and

FDS, 5 percent of AACS, and 100 percent of DSS. The per-
centage for PWR (40 percent for Voyager) is taken to be the

percentage of telecommunication power as derived in Appen-
dix A. The percentage for PROP is taken to be the percentage
of telecommunication mass (34 percent for Voyager) since

almost all of the propellant is allocated to trajectory correc-

tion maneuvers. Only a very small percentage of the propel-

lant (0.5 percent in the case of Galileo) is allocated to keeping

the High Gain Antenna pointed toward the Earth (because of

a different engine design, this may be more significant for

CRAF). To illustrate, see Table 1 for the calculation of STRU.

The complete mass calculation is shown in Table 4. The results

of the Voyager mass calculation can be seen in Table 2.

III. Results and Conclusions

We have examined the mass of the telecommunications sys-

tems of three representative spacecraft: Voyager, which has

been in flight since 1977; Galileo, which is ready to be

launched; and CRAF, which is under design. These show the

progression chronologically. Due to different mission require-
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ments, certain features of the spacecraft make direct compari-

son of percentage figures difficult. The most significant feature

is that of the differences between the three propulsion systems.

The propulsion subsystem of the Voyager mission module is

only 35.26 kg. The main provider of propulsion, the propul-

sion module (158.55 kg), is jettisoned en route. Galileo, in

contrast, has a very large retro-propulsion module (201.52 kg)

included in the mission module, s,6 CRAF has an even heavier

retro-propulsion module (374.73 kg) compared to Galileo. 7

Other significant features are the spin-bearing assembly and

probe-related hardware on board Galileo.

5Galileo, Project Document 625-205, Functional Requirements Book,

vols. 1 and 2 (internal document), Jet Propulsion Laboratory, Pasa-
dena, California, 1982.

6Galileo Quarterly Mass Report and Equipment List, issue 31 (internal

document), Jet Propulsion Laboratory, Pasadena, California, April 29,
1986.

7Mariner Mark H Conj_guration, Mass and Power Report, issue 12

(internal document), Jet Propulsion Laboratory, Pasadena, California,

August 18, 1986.

However, the present analysis approach is consistent

throughout. It is felt that estimates of spacecraft mass are

all within 5 percent error. In any case, the results give a fair

comparison of mass among the three spacecraft studied.

The results show that the portion of the spacecraft attri-

butable to telecommunications is substantial. In particular,

the mass fraction for the three chronologically representative

spacecraft, Voyager, Galileo, and CRAF, is 34 percent, 19 per-

cent, and 18 percent, respectively. The large reduction of tele-

communications mass from Voyager to Galileo is mainly due

to the use of a deployable antenna instead of the solid antenna

on Voyager.

We conclude that we should work toward further reducing

the spacecraft telecommunications mass. Alternately, we can

improve the telecommunications capability of the Deep Space

Network (DSN) so that the required spacecraft telecommuni-

cations system mass can be reduced for equivalent communi-

cations performance. Continued progress in the area of deep

space telecommunications technology development is essential

to achieving new goals in space exploration.

84



Table 1. Telecommunications mass calculation for STRU

Mass, Contribution, Mass,
Category

kg % %

Fully telecommunication 63.16 100.00 63.16

Non-telecommunication 42.10 0.00 0.00

Partly telecommunication

PWR 21.16 39.64 8.39

CCS 5.22 10.00 0.52

FDS 5.34 10.00 0.53

AACS 11.30 5.00 0.57

PROP 15.38 33.71 5.19

DSS 5.24 100.00 5.24

Total 168.63 kg 83.60 kg

Table 2. Voyager mass results summary

Total TC-related Non-TC
TC-related

Subsystem mass, mass, mass,

kg kg kg percentage

STRU 168.63 83.32 85.31 49.41

RFS 44.44 44.44 0.00 100.00

MDS 8.41 8.41 0.00 100.00

PWR 136.39 54.07 82.32 39.64

CCS 15.51 1.55 13.96 10.00

FDS 19.32 4.05 15.27 20.95

AACS 49.74 2.49 47.25 5.00

PYRO 5.34 0.00 5.34 0.00

CABL 51.62 8.58 43.04 16.62

PROP 35.26 11.89 23.37 33.71

TEMP 29.63 6.31 23.32 21.29

DEV 16.12 1.29 14.83 8.02

DSS 15.15 14.39 0.76 95.00

SXA 5.09 5.09 0.00 100.00

SCI 123.00 0.00 123.00 0.00

SAH 5.68 0.00 5.68 0.00

Total 729.33 245.88 483.45 33.71

Table 3. Acronyms and abbreviations

Voyager Mission Module Subsystems:

RFS Radio Frequency Subsystem

MDS Modulation/Demodulation Subsystem

SXA S/X-Band Antenna Subsystem

CCS Computer Command Subsystem

FDS Flight Data Subsystem

AACS Attitude and Articulation Control Subsystem

STRU Structure Subsystem

CABL Cabling Subsystem

TEMP Temperature Control Subsystem

PWR Power Subsystem

PROP Propulsion Subsystem

DSS Data Storage Subsystem

PYRO Pyrotechnic Subsystem

DEV Mechanical Devices Subsystem

SAH Systems Assembly Hardware

SCI

CRS Cosmic Ray Subsystem

PRA Planetary Radio Astronomy Subsystem

PWS Plasma Wave Subsystem

LECP Low Energy Charged Particle Subsystem

PPS Photopolarimeter Subsystem

PLA Plasma Subsystem

UVS Ultraviolet Spectrometer Subsystem

MAG Magnetometer Subsystem

ISS Image Science Subsystem

IRIS Infrared lnterferometer Spectrometer and

Radiometer Subsystem

Miscellaneous Acronyms and Abbreviations:

CRAF Comet Rendezvous Asteroid Flyby

TC Telecommunications

DSN Deep Space Network
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Table 4. Voyager mass calculation

TC-related Non-TC PWR* CCS FDS AACS PROP DSS Subsystem TC-related

Subsystem 100.0% 0.0% 39.64% 10.0% 10.0% 5.0% 33.71% 100.0% total total

STRU Total 63.16 42.10 21.16 5.22 5.34 11.30 15.38 5.24 168.63

TC related 63.16 0 8.39 0.52 0.53 0.57 5.19 5.24 83.56

RFS Total 44.44 0 0 0 0 0 0 0 44.44

TC related 44.44 0 0 0 0 0 0 0 44.44

M DS Tot al 8.41 0 0 0 0 0 0 0 8.41

TC related 8.41 0 0 0 0 0 0 0 8.41

PWR Total 0 0 136.39 0 0 0 0 0 136.39

TC related 0 0 54.07 0 0 0 0 0 54.07

CCS Total 0 0 0 15.51 0 0 0 0 15.51

TC related 0 0 0 1.55 0 0 0 0 1.55

FDS Total 2.35 0 0 0 16.97 0 0 0 19.32

TC related 2.35 0 0 0 1.70 0 0 0 4.05

AACS Total 0 0 0 0 0 49.74 0 0 49.74

TC related 0 0 0 0 0 2.49 0 0 2.49

PYRO Total 0 5.34 0 0 0 0 0 0 5.34

TC related 0 0 0 0 0 0 0 0 0

CABL Total 2.47 25.64 6.09 2.07 ]5.03 2.86 6.93 0.53 51.62

TC related 2.47 0 2.42 0.21 0.50 0.14 2.34 0.50 8.58

PROP Total 0 0 0 0 0 0 35.26 0 35.26

TC related 0 0 0 0 0 0 11.89 0 11.89

TEMP Total 2.48 13.78 2.55 1.09 1 09 4.87 2.00 1.77 29.63

TC related 2.48 0 1.01 0.11 0 11 0.24 0.68 1.68 6.31

DEV Total 0 12.86 3.26 0 0 0 0 0 16.12

TC related 0 0 1.29 0 0 0 0 0 1.29

DSS Total 0 0 0 0 0 0 0 15.15 15.15

TC related 0 0 0 0 0 0 0 14.39 14.39

SXA Total 5.09 0 0 0 0 0 0 0 5.09

TC related 5.09 0 0 0 0 0 0 0 5.09

SCI Total 0 123.00 0 0 0 0 0 0 123.00

TC related 0 0 0 0 0 0 0 0 0

SAH Total 0 5.68 0 0 • 0 0 0 0 5.68

TC related 0 0 0 0 0 0 0 0 0

Total 729.33 kg 246.14 kg

*Also see table in Appendix A.
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Appendix A

Spacecraft Telecommunications System
Power Estimates

Power is also an important limiting parameter for present-

day planetary spacecraft design. A study of the power attri-

buted to the communications system for spacecraft designs

used in recent missions is presented here. 8-n

The basic approach is similar to that of the mass study,

i.e., to examine the spacecraft by subsystem and allocate a
portion of each subsystem to telecommunications. The per-

centage for power is calculated using power allocations derived

from actual preflight subsystem testing (except in the case of

CRAF, which is done using estimates). Only the dry mission

module is taken into account. The portion of power for

Voyager, Galileo, and CRAF attributable to the telecommu-
nications system is 40 percent, 29 percent, and 18 percent,

respectively. The results show that the portion of the space-

craft power attributable to telecommunications is substantial.

The task at hand is to separate the spacecraft into two parts,

telecommunications and non-telecommunications, with regard

to power. Again, the Voyager spacecraft is used to illustrate

the analysis. This method is used to obtain results for the

other spacecraft.

The telecommunication-related power percentage is calcu-

lated using figures from volume 1 of Project Document 618-

205. 8 These list 50 power modes, from launch through the

Saturn encounter, with power allocations by subassembly

8Mariner Jupiter/Saturn 1977, Project Document 618-205, vol. 1
(internal document), Jet Propulsion Laboratory, Pasadena, Califor-
nia, pp. 11-23, June 8, 1977.

9Mariner Jupiter/Saturn 1977, Project Document 618-205, vol. 2
(internal document), Jet Propulsion Laboratory, Pasadena, Califor-
nia, May 12, 1977.

lOGalileo Quarterly Power Report, issue 33 (internal document), Jet
Propulsion Laboratory, Pasadena, California, May 20, 1986.

nComet Rendezvous Asteroid Flyby, Project Document 699-100,
Rev. C (JPL D-1457 Rev. B) (internal document), Jet Propulsion
Laboratory, Pasadena, California, May 1986.

and subsystem. Of the 50 modes, nine are identified as the

main power modes, i.e., essentially the cruise background

modes and any modes lasting more than two days. The fig-

ures from these nine modes are used for the Voyager power
calculation and are summarized in Table A-1. Included in

Table A-2 are the equations used to calculate the percent-

age of telecommunication-related power from each of the

nine modes. The percentage of telecommunication-related

power is extracted from each mode in a manner similar to

the mass calculation. The telecommunication percentage for

each mode is multiplied by the length of its respective mode
and then summed. This sum is divided by the sum of the

lengths of the modes to give an overall percentage.

The power figures from volume 1 of Project Document

618-2058 represent the maximum steady-state power al-

located to spacecraft subsystems.

The lengths of the modes are derived from volumes 1 and 2

of Project Document 618-2058,9 using launch, Jupiter en-

counter, and Saturn encounter dates from the Voyager 2

mission (see Table A-l).

The power-needed calculation uses the Total DC Bus Power,

which is the amount of power the subsystems will be using.

The other percentage given is the power available using the net

power capability (Most Probable) instead of Total DC Bus

Power. Power available is slightly higher than power needed to

provide a safe power margin. Therefore this gives a smaller

overall percentage.

The mass analysis is done using both the power-needed and

the power-available figures. The resulting telecommunications
mass percentages are within 1 percent of each other, so only

the power-needed figure was used in the preceding mass
calculation.

Despite differences in the spacecraft, this analysis approach
is consistent throughout. The present estimates of spacecraft

power are all felt to be within 5 percent error. In any case, the

results give a fair comparison of power among the three space-
craft studied.
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Table A-1. Voyager power results summary

Mode

number
Length,

days

TC percentage of power

Power needed Power available

24 96 46.97 45.31

25 541 38.70 33.20

27 6 39.31 35.56

31 40 45.28 47.32

36 39 45.75 44.73

37 700 38.62 34.44

39 8 33.90 29.35

43 29 45.28 49.50

48 29 37.69 37.89

Total 39.64 35.64

Table A-2. Power calculation equations

Category Percentage

TC 100

PWR 39

CCS 10

FDS 10

AACS 5

PYRO 0

DSS 95

SCI 0

PROP 33

A = (MDS × TC%) + (PWR × PWR%) + (CCS × CCS%)

+ (FDS × FDS%) + (AACS × AACS%) + (PYRO × PYRO%)

+ (DSS × DSS%) + (STRU*) + (PROP × PROP%)

+ (SCI × SCI%)

where STRU* = (Bay 1 heater × TC%)

+ (Bay 2 heater × DSS%)

+ (Bay 6 heater × AACS%)

A
B = AC wiring loss ×

total eng load + SCI

(A + B)
C = (2.4 kHz inv loss... + power factor loss) ×

TotalTCACpowerload = A+B+C

D = (RFS x TC%) + (PWR × PWR%) + (FDS × FDS%)

+ (AACS X AACS%) + (SCI × SCI%) + (TC/S X SCI%)

+ (TC/E*)

where TC/E* = (Az Act Rep × SCI%)

+ (Sun Sen Htr X AACS%)

+ (IPU Valve Htr × PROP%)

+ (IPU Red V Htr × PROP%)

+ (IPU Thrus Htr × PROP%)

+ (TCAPU Red Htr × PROP%)

+ (Scn Pltfm Htr X SCI%)

D
E = DC wiring loss x

total reg DC load

TotalTCDCpowerioad = D+E

total TC AC power load + total TC DC power load
TC power % =

total DC bus power

total 2.4 kHz inv load
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A phase calibration system has been developed for the Deep Space Stations to gener-

ate reference microwave comb tones which are mixed in with signals received by the

antenna. These reference tones are used to remove drifts of the station's receiving system
from the detected data. This phase calibration system includes a cable stabilizer which

transfers a 20 MHz reference signal from the control room to the antenna cone. The cable

stabilizer compensates for delay changes in the long cable which connects its control

room subassembly to its antenna cone subassembly in such a way that the 20 MHz is
transferred to the cone with no significant degradation of the hydrogen maser atomic

clock stability. The 20 MHz reference is used by the comb generator and is also available
for use as a reference for receiver LOs in the cone.

I. Introduction

A Phase Calibration Generator (PCG) has been developed
for the Deep Space Stations to provide phase calibration of

the station's receiving system. This subsystem generates high
stability microwave comb tones in the antenna cone which

are referenced to the hydrogen maser in the control room.

These comb tones are mixed with the signal received by the

antenna. When the data from the received signal is processed,

these tones are extracted from the data stream and their phase

is used to determine the phase error which has been added to

the data stream by the station's receiving system.

The PCG consists of a Transmitter unit in the control room

and a Receiver unit in the antenna cone area. The Receiver

unit contains the comb generator which generates tones at

every integer multiple of 5IN MHz where N is an integer from

5 to 99. The PCG also contains a cable stabilizer which is split

between the transmitting and receiving units. This cable stabi-

lizer compensates for phase changes in the long cable connect-

ing the Transmitter unit to the Receiver unit. The output of

the cable stabilizer consists of stabilized signals at 5IN MHz

and at 20 MHz. The 5IN MHz is used by the comb generator
to generate the comb tones. The stabilized 20 MHz is used as

a frequency reference in the cone for generation of receiver

LOs. A 5 to 20 MHz converter in the Transmitter unit provides

the 20 MHz for the cable stabilizer. The 5IN MHz is supplied

by a divide-by-N circuit in the Transmitter which is synchro-

nized to the station's 1 pps time reference. This synchroniza-

tion assures that the delay from the station's 1 pps to the
comb generator pulse will always be the same constant value.

A detailed description of the PCG design and performance fol-
lows. First the cable stabilizer will be discussed, and then the
comb generator will be described.

II. Cable Stabilizer

A. Description

A block diagram of the cable stabilizer is presented in Fig. 1.

More detailed block diagrams of the transmitting and receiving
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units are shown in Figs. 2 and 3. The Transmitter generates

20 MHz and 5IN MHz signals from the 5 MHz station refer-

ence. These 20 and 5IN MHz signals are sent up the cable to the

Receiver where they are separated by filters and mixed together
in a double balanced mixer. The resultant 20 + 5IN MHz and

20 - 5IN MHz components are sent back down the cable to

the Transmitter for phase comparison with the 20 MHz signal

being sent up the cable. The error signal from this phase com-

parison is used to drive a voltage controlled phase shifter

('VCPS) which compensates for phase changes in the cable.
The result of this process is stabilized 20 MHz at the Receiver

unit. The 5IN MHz into the Receiver unit is not cable stabi-

lized but is used by the GATE circuit to gate individual

cycles of the stabilized 20 MHz in order to obtain stabilized

5/NMHz pulses to drive the comb generator.

The power divider through which the 20 + 5IN MHz and

20 - 5IN MHz components are sent down the cable does not

have perfect isolation. Thus some 20 + 5IN MHz and 20-

5IN MHz components will appear on the cable-stabilized
20 MHz in the Receiver. Since the 5IN MHz is not cable

stabilized, these components could cause phase instabilities
in the 5/NMHz output of the GATE circuit. Therefore, before
the cable-stabilized 20 MHz is sent to the GATE, it is filtered

by a crystal filter which attenuates the 20 + 5IN MHz and

20 - 5IN MHz components down to a level at which they will

not significantly affect the phase stability of the GATE cir-

cuit's output. The 20 MHz also passes through a second

crystal filter before being made available as an output for

generation of the Receiver LOs. This second crystal filter is

necessary because of the stringent limits on the maximum
allowable 20 + 5/N and 20 - 5/N components for the 20 MHz

frequency reference.

The phase comparison process in the Transmitter requires

a 5IN MHz signal which has approximately the same time

delay with respect to the Receiver as do the 20 + 5IN and

20 - 5IN signals. This is provided by the Receiver, which has

a high input impedance at 5/N MHz. Since this input imped-
ance does not match the 50 ohm line, the 5IN MHz signal is

reflected back down the cable. A hybrid in the Transmitter

separates this reflected 5IN MHz signal from the 5IN MHz

being sent up the cable.

The operation of the cable stabilizer may be described in
more detail as follows. The signal sent up the cable has the

form:

sin 27r20t

where t is in/asec.

This is multiplied by a 5IN MHz signal in the Receiver's
double balanced mixer so that the signal sent down the cable

to the Transmitter is

sin (27r20t + 41) sin 27r5t

where 41 = two way cable delay.

The first mixer in the Transmitter multiplies this by 20 MHz

to give

sin 27r20t sin (27r20t + 41) sin 2n5t

The product of the first two sinusoids generates a 40 MHz
term and a dc term. The 3 MHz low-pass filter (LPF) filters

out the higher frequency terms leaving a term of the form

cos _b1 sin 2rrNt

The second mixer in the Transmitter multiplies this by the

reflected 5IN MHz to give

where 8 = error between the phase of the reflected 5IN MHz

and the phase of the 5IN MHz modulation on the 20 MHz, and

-45 degrees < 8 < 45 degrees.

The 5IN MHz phase error, 8, is due to the cable dispersion

and hybrid imperfections. The product of the sinusoids gener-

ates a lOIN MHz term and a dc term. After low-pass filtering

in the loop filter, the remaining term is

cos ¢1 cos 8

This signal is integrated by the loop filter to generate a control

signal for the VCPS. The VCPS controls 41 thus completing
the feedback loop. The action of the feedback loop is to keep

cos41 = 0 (1)

or

ff

41 = _+ 2mr (2)

where n is an integer. As a result, the total delay through the

VCPS plus the cable is held constant.

Note that the 5IN MHz phase error, 6, only affects the

amplitude of the detected signal and does not affect the phase
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at which lockup occurs as long as 8 does not get close to

+90 degrees. The use of the reflected 5IN MHz for demodula-

tion assures that 8 stays close to zero.

It can be seen that the feedback also has a potential lockup

point for

(2n + a) _r (3)

However, this is an unstable lockup point because the feed-

back is positive. The type of feedback is determined by the

slope of cos ¢1 cos 8. Thus, for 0 < ¢1 < 7r the feedback is

negative, whereas for 7r < _1 < 2zr the feedback is positive. In
the positive feedback region, the feedback loop will be unsta-

ble, which will cause the VCPS control voltage to swing to

either its positive or its negative saturation limit. To avoid this

problem, a search circuit is used. Whenever the VCPS control

voltage gets too close to either its positive or its negative satu-

ration limit, the search circuit takes over and sweeps the VCPS

control voltage over its range until a stable lockup point is

found. Since the VCPS is designed to have a range of slightly

greater than 180 degrees (which makes its two way range

slightly greater than 360 degrees), a stable lockup point will

always be found. However, one must not get too close to the

limits of the VCPS's range. If the VCPS control voltage gets
too close to one of its limits, the search circuit will take over

and find another lockup point near the other extreme of the

VCPS's range. This will cause the output of the cable stabi-

lizer to slip by one cycle. (The search circuit is described in
more detail in a NASA technical brief which will be published

soon.)

B. Error Sources

There are many error sources which can degrade the per-
formance of the cable stabilizer. The most significant error

sources which have been considered in the design of the cable

stabilizer are discussed in the following sections.

1. Spurious signals. Spurious signals at any point in the

cable stabilizer can alter the phase of the signal at that point

in the circuit. The worst case is when the spurious signal is

90 degrees out of phase with the desired signal. Consider this

case as shown in Fig. 4. The desired signal is the D vector and

S is the spurious signal's vector. The resultant vector, R, is

displaced in phase from the true value by the angle a. The

phase error, a, is given by

o=t,n" ,4>
where S and D represent the vector magnitudes.

For S small with respect to D, this may be approximated by

$
: - (s)D

Let _'a = the delay error.

Then, if f is the frequency of the desired signal,

a : 2_rf% (6)

so that

S

% - 2rrfD (7)

The design goal has been to keep the cumulative effect of

all such errors less than 1 ps. From the above equation, any

single such error will cause less than a 1 ps error at 20 MHz if
(S/D) < -78 dB. Since there could easily be on the order of

10 such error sources in the cable stabilizer, if these error

sources add in a root sum square manner, then each error
source should have (S/D) < -88 dB. With this in mind, the

cable stabilizer has been designed with the goal of keeping all

spurious signals at least 90 dB down, and if possible 100 dB
down.

Numerous spurious signal sources have been considered in

the design of the cable stabilizer. For example, the 5 to 20 MHz

converter in the Transmitter which generates the 20 MHz must

have its spurious output components adequately suppressed.

The 15 and 25 MHz components must be especially well sup-

pressed since they are well within the bandpass of the 20 MHz

bandpass filters (BPFs) of the cable stabilizer. Also, spurious

signals from amplifiers in the 20 MHz paths of the cable stabi-
lizer are kept within acceptable levels by using amplifiers with

reasonably low distortion. These amplifiers are operated well
below their maximum output level to assure that the har-

monics they generate are kept down to an acceptable level.

In addition, interactions of components in the cable stabi-

lizer have been considered. For example, spurious signals from

one component which could generate unwanted intermodula-

tion products in another component must be adequately sup-
pressed. In particular, the signal voltages on the varicaps in the

VCPS cause phase modulation of the signals in the VCPS.

This generates intermodulation products of the 20 MHz and

20 + 5IN or 20 - 5IN MHz signals in the VCPS. These inter-

modulation products could generate intermodulation products

in the mixer which might degrade the performance of the

cable stabilizer. To avoid this problem, an extra 20 MHz BPF

is used (shown on the left side of the VCPS in Fig. 2) to sup-
press intermodulation products generated by the VCPS. In
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addition,the amplitude levels of the signals in the VCPS have

been chosen to keep errors from intermodulation products

down to acceptable levels.

2. Amplifier nonlinearities. An additional effect which

can be caused by amplifier nonlinearities is a shift of the zero

crossing of a signal. This is of concern since the GATE circuit
in the Receiver converts the 20 MHz sine wave to a square

wave by using a zero crossing detector. If the gain of an

amplifier is asymmetric about zero volts, the amplifier will

generate even harmonics and shift the zero crossing time of a
sine wave. The amount of zero crossing shift will be depen-

dent on the amplitude of the sine wave. If the harmonic dis-

tortion is low, the amount of zero crossing phase shift for a

given amplitude change is, to a good approximation, propor-
tional to the second harmonic distortion. Thus the zero cross-

ing shift can be determined from the second harmonic distor-

tion. The amplitude sensitivity of the zero crossing as a func-
tion of second harmonic distortion is given in Table 1 for a

20 MHz sine wave. Note that the phase error is independent

of frequency. Thus the time error is inversely proportional to

frequency.

To keep the zero crossing shift errors low, the 10 dB ampli-
fier which drives the GATE has a 20 MHz BPF on its output to

attenuate the amplifier harmonics. This filter keeps the second
harmonic at least 75 dB down. From Table 1, the amplitude

dependence of zero crossing time will then be kept down to

0.14 ps/dB. The main source of amplitude changes in the cable
stabilizer is the VCPS, which has a loss which varies as its

phase setting is changed. For normal operation, the loss varia-
tion is well under 1 dB so that zero crossing shifts due to am-

plitude changes are under 0.1 ps.

3. VSWR induced error

a. Analysis. Standing waves on the cable between the

Transmitter and Receiver caused by a mismatch between the

cable and the components connecting to the cable can reduce

the accuracy with which the cable stabilizer can measure a

change in cable length and correct for it. Consider the case
shown in Fig. 5 where a signal with a voltage magnitude V is
transmitted from the left end of the cable to the right end. A

mismatch at the right end reflects the signal back down the

cable with magnitude V'. The magnitude of the reflection
coefficient is

Vt

P2 - v (8)

Similarly, at the left end the signal V' is re-reflected back up

the cable with a magnitude of V". The magnitude of the
reflection coefficient at the left end is

Vt!

Pl - V' (9)

The signal received at the right end of the cable is the vector
sum of V and V"

When the cable changes in length, the magnitude of the

change can be determined by measuring the phase change of

the signal received at the right end of the cable. The presence

of the re-reflected signal, V", will corrupt this measurement.

The error will be largest when V" is in phase with V or 180

degrees out of phase with V. Consider the case where V" is

initially in phase with V at the right end of the cable. Then
let the cable stretch slightly so that the signal V at the right

end of the cable increases in phase by A¢. We wish to measure

this phase change Aq) to determine the change in cable length
and correct for it. Let us calculate the error in measuring

Aq) caused by the re-reflected signal V". The signal V" has

traversed the cable three times by the time it reaches the right

end so it will increase in phase by 3Aq). Thus, after the cable

stretch, the phase of V" with respect to V will be 2Aq_. The

phase relationship between these vectors is depicted in Fig. 6.

The vector V R, which is the vector sum of V and V", is the

signal which will be detected at the right end of the cable.

The phase angle, e, between V R and V is the error in measur-
ing the phase of V and is thus the error in measuring A(_ from

which the change in cable length is determined. From Fig. 6,

the error angle e is given by

V" sin2A_b )e = tan -1 V+ V" (10)cos 2Aq_

From Eqs. (8) and (9)

V" = plP2V (11)

SO

. pip2 sin 2A@ )e = tan-1 1 +pip2 cos2A_ (12)

For small changes in cable length,

2A¢ << 1

SO

sin 2A4) _- 2A¢

cOS 2AO _ 1
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We then get

In the typical case

2PIP2A¢ t
e = tan -I \1 +plp2 ]

piP2 (< 1

so the above expression becomes

e = 2plp2A¢

Let

Ar = the change in cable time delay

r e = error in measuring Ar

f -- frequency of signal in cable

then

(13)

(14)

a_ = far (15)

e = fr e (16)

If we substitute Eqs. (15) and (16) into Eq. (14)we get

r e = 2plp2Ar (17)

It is seen that the error in time delay measurement caused by a

mismatch is independent of frequency.

Consider the case where

Pl = P2 = P (18)

The voltage standing wave ratio (VSWR), S, is given by

1 + p (19)
S-l_ p

so that

S-1
P - S + 1 (20)

From the above expressions we can determine the worst case

errors for measurement of cable delay change as a function of
the VSWR. This worst case error is tabulated in Table 2 for a

came length change of 1 ns. In the Deep Space Stations the

maximum cable length change over a 24 hour period is nor-

mally less than 1 ns so this table provides upper limits for
VSWR induced errors.

b. Design. From the foregoing analysis it is seen that it is

important to keep the VSWR of the cable from the Transmit-

ter to the Receiver as low as possible along with all compo-

nents which connect to the cable. Thus the VSWR of every

component which connects to the cable has been carefully

considered in designing the cable stabilizer. The 3 MHz Low-

Pass Filters (LPFs) have tuned traps which isolate their cir-
cuitry from the cable at 20 MHz. If no other mismatches

exist, the 3 MHz LPFs will degrade the VSWR to no worse
than 1.02.

The 20 MHz BPFs use a circuit configuration which mini-

mizes the VSWR at the center frequency and keeps the VSWR

low in a symmetric manner about the center frequency. The

physical layout of the circuit has been carefully determined

for minimum VSWR, and each filter is individually tuned for

minimum VSWR. Typical performance for these filters is a
VSWR of <1.02 for 19.5 to 20.5 MHz and a VSWR of<1.06

for 19.0 to 21.0 MHz.

The VCPS has also been designed for low VSWR. The typi-

cal VCPS has a VSWR which drops to a minimum value of

about 1.02 somewhere near the center of its phase correcting

range. At the edges of its range the VSWR is <1.22. For each

VCPS the control voltage at which it has minimum VSWR is
determined in the lab. When the PCG is installed in the field,

the length of the cable from the Transmitter to the Receiver

is adjusted so that the cable stabilizer is operating with a con-

trol voltage dose to this value. As a result of this procedure,

the VCPS is normally in a range where its VSWR is <1.04.

Then for the overall Transmitter the VSWR is normally
<1.09.

For the Receiver, the input VSWR is normally <1.19. Using
this number for the Receiver and 1.09 for the Transmitter the
reflection coefficients for the Transmitter and Receiver are:

Pr < 0.043

PR < 0.087

If we put these numbers into Eq. (17) we get

T

_L < 7.5 ps/nsAr

for the worst case VSWR induced error.

The reciprocal of this number gives:
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cable correction factor > 134

This number indicates the amount by which the cable stabi-

lizer improves the cable performance. Both laboratory and
field tests of the cable stabilizer have indicated that the typi-

cal cable correction factor obtained is 100 to 1000. The close

agreement between measured performance and calculated per-
formance seems to indicate that VSWR is the main limiting

error source.

4. Dispersion. Dispersion in the cable or cable stabilizer

components can generate errors in the cable compensation.
The cable stabilizer feedback loop holds the two way delay in

the cable constant. If the delay through the cable in each

direction is equal, then the one way delay will be held con-

stant. However, a typical cable will have some dispersion so

that the delay at 20 + 5IN MHz and 20 - 5IN MHz will not be
the same as the 20 MHz delay. But the 20 + 5IN and 20 - 5IN

delays will differ from the 20 MHz delay by about the same

amount except in opposite directions. Since the cable stabi-
lizer uses both the 20 + 5IN and 20 - 5IN signals, the disper-

sion errors will almost cancel if the cable stabilizer has equal

gain at these two frequencies and symmetric phase response
about 20 MHz. The components of the cable stabilizer which

limit its ability to meet these criteria are the 20 MHz BPF and

the VCPS.

As mentioned previously, the 20 MHz BPF uses a circuit

configuration which gives virtually symmetric behavior about
the center frequency. The flatness of this filter is +0.075 dB
from 19 to 21 MHz. The attenuation at 20 + 5IN MHz matches

the attenuation at 20 - 5IN MHz within 0.1 dB. The VCPS is
fiat to better than +0.1 dB from 19 to 21 MHz. These per-

formance specifications keep the gain of the cable stabilizer
at 20 + 5IN MHz within 4 percent of the gain at 20 - 5IN MHz,

thus minimizing dispersion effects.

5. Choice of cable stabilizer frequency. Since 5 MHz is

the reference frequency used for the cable stabilizer, an inte-

ger multiple of 5 MHz is the logical choice for the cable stabi-

lizer frequency. For a good crystal filter 20 MHz is about the

highest practical frequency, so this was one of the driving fac-

tors in the choice of frequency. In addition, 20 MHz is a low

enough frequency for the cable stabilizer to handle any ex-

pected cable length changes without a cycle slip. In practice,

for typical cable length changes the VCPS stays well within

its range of optimal VSWR performance when 20 MHz is

used.

The effect of cable stabilizer frequency on the cable stabi-

lizer's ability to correct changes in cable length is also of

interest. As indicated in previous sections, errors due to spuri-

ous signals and amplifier nonlinearities decrease with increas-

ing frequency. Also, phase noise tends to be constant with

frequency so the time jitter caused by phase noise will be

lower for higher cable stabilizer frequencies. However, the
VSWR induced error is a function only of VSWR and is inde-

pendent of frequency. Since the VSWR of most electronic
circuits tends to increase with frequency, the VSWR induced

error tends to increase with frequency. As indicated previously,

in this cable stabilizer the VSWR induced error appears to be
the dominant error source. Thus, if cable correction ability is

the primary criterion used to select the cable stabilizer fre-

quency, one would probably not want to choose a higher

frequency than 20 MHz. In fact, it may be possible to improve
the cable correction ability by a factor of 2 or so by going to

a lower frequency. However, use of a lower frequency would

increase phase noise effects. Thus, one would have to weigh

phase noise effects against cable correction ability if another

operating frequency for the cable stabilizer were to be
considered.

6. Thermal drifts. The long term stability of the PCG is

primarily limited by thermal drifts of the electronic compo-
nents. To minimize the effects of environmental temperature

changes, all critical electronic circuitry is housed in ovens

which maintain a relatively constant temperature.

a. Ovens. All of the ovens used in the PCG have a copper

or aluminum baseplate which acts as a temperature control-
led surface. All electronic modules are built in aluminum

boxes which are mounted on the baseplate with thermal grease

to assure good thermal conduction. A thermistor at the cen-
ter of the baseplate senses the baseplate temperature and con-

nects to a proportional controller which controls the oven

temperature. An aluminum box encloses the electronic mod-
ules and the baseplate. This box is surrounded by a layer of

insulation and then by an outer box.

The Transmitter oven has its inner box completely covered

with pad heaters which provide uniform heat. A layer of air
between the inner and outer boxes provides insulation. A fan

circulates air around the outer box to remove excess heat. The

oven holds a nominal internal temperature of 50°C for exter-

nal temperatures of 0°C to 25°C. Any external temperature

change is reduced by a factor of about 100 on the inside of the

oven.

The Receiver oven uses thermoelectric heat pumps to con-

trol the interior temperature by pumping heat into or out of

the baseplate depending upon the outside temperature. The

aluminum baseplate is mounted on six copper rods. Each cop-

per rod connects to a heat dissipator plate on the outside box

through a thermoelectric heat pump. The space between the
inner and outer boxes is filled with urethane foam and Styro-

foam insulation. The oven maintains a nominal inside tempera-
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tureof 60°Cforoutsidetemperaturesintherangeof-55°Cto
+55°C.Externaltemperaturechangesarereducedbyafactor
ofabout100ontheinsideoftheoven.

InsomeinstallationstheReceiveristoolargetobemounted
closeto thecombgenerator'smicrowaveinjectionpointon
theantennaassembly.In suchcases,thecombgeneratoris
mountedin its ownsmallovencalleda CGA(CombGener-
atorAssembly). The CGA also uses thermoelectric heat pumps.

Its copper baseplate is mounted on four thermoelectric heat

pumps which in turn are mounted on the external heat dissipa-
tion plate. Styrofoam insulation is used between the inner and

outer boxes. The oven holds a nominal internal temperature of
60°C for external temperatures of -55°C to +65°C. The oven

reduces external temperature changes by a factor of about 150.

b. Temperature coefficients of electronics. The tempera-
ture coefficients of the various modules in the PCG have been

measured by changing the set point of the oven and measuring

the resultant phase change. The phase change was determined

by using the long term stability test setup described in Sec-
tion II.C.2.b. The comb generator phase change was measured

using the comb generator test setup described in Section III.C.

For the LEVELING-AMP-GATE the temperature coefficient
was not measured but was determined from known character-

istics of the chips in the circuit. The typical temperature coef-

ficients of delay for the major modules in the PCG are shown
in Table 3.

The overall typical temperature coefficients for the Trans-
mitter and Receiver electronics are:

Transmitter electronics

Receiver electronics

To comb generator output

To 20 MHz output

13 ps/°C

48 ps/°C

80 ps/°C

The ovens reduce the sensitivity of the electronics to the envi-

ronment. For each of the PCG components the typical sensi-
tivity to the environment is:

Transmitter 0.6 ps/°C

Receiver

To comb generator output 0.5 ps/°C

To 20 MHz output 0.8 ps/°C

CGA 0.01 ps/°C

Note that the Transmitter oven reduces the environmental sen-

sitivity of the electronics to about 0.1 ps/°C. However, the

cable in the Transmitter chassis which brings the 5 MHz input

from the back panel to the oven is not a phase stable cable and

is not protected from the environment. This cable will add about
0.5 ps/°C to the environmental sensitivity of the Transmitter.

C. Performance

1. Cable correction ability. The cable correction ability of

the cable stabilizer has been tested in the laboratory by using
the long term stability test setup which is described in Sec-

tion II.C.2.b. A piece of cable with a known delay of about
2 ns was added to the cable between the Transmitter and

Receiver, and the delay change in the Receiver's output was

measured. This test has been performed for various values of

N as part of the acceptance testing for each unit which has
been installed in the field. The results of these tests indicate

that the normal range of cable correction ability is 100 to 1000.

The first two PCGs which were installed at the Goldstone

Deep Space Station were also tested in the field for cable cor-

rection ability. The phase of the phase calibrator tone was
monitored through the station's receiving system while a cable

with a 4.3 ns delay was added to the cable from the Transmit-
ter to the Receiver. The results of this test are shown in

Table 4. This test also showed the cable correction ability to

be in the range of 100 to 1000.

2. Long term stability

a. Expected performance. The following estimates for the

overall performance of the PCG subsystem in a Deep Space

Station are based upon the data presented in the previous sec-
tions. The cable from the Transmitter to the Receiver is taken

to be a 1000-foot-long hard line. Such a cable would typically

have a temperature coefficient of 25 ppm/°C and a delay of

1.5 microseconds. This would give a temperature coefficient
for the cable delay of 37.5 ps/°C. Since the cable stabilizer
corrects the cable by a factor of at least 100, the corrected cable

would have a temperature coefficient of less than 0.375 ps/°C.

A setup is considered in which the comb generator is sepa-
rate from the Receiver in its own CGA oven. It is assumed

that the CGA is connected to the Receiver through a 10-foot-

long phase stable cable with a temperature coefficient of
14 ppm/°C. The delay through such a cable would be 15 ns,

which would give a delay temperature coefficient of 0.2 ps/°C.

The coupling of the comb generator into the front end of
the station's microwave receiving system is also considered.

The present coupler is a loop coupler which does not have ade-

quate performance for phase calibration applications. This

coupler is going to be replaced with a Bethe hole coupler on

the antenna's feed horn. Aside from the improved performance

which will be obtained, an important advantage of the Bethe
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hole coupler is that it will inject the phase calibrator tone as

far forward in the receiving system as is possible.

The estimated environmental temperature changes for the

PCG subsystem over a 24 hour period are taken as:

Transmitter + 1°C

Cable (from Transmitter to

Receiver) ±5°C

Cone (includes Receiver,
cable from Receiver to

CGA, CGA, and Coupler) ± 15°C (±5°C)

For the cone the estimates indicated are for poor environmen-

tal control. Numbers in parentheses indicate performance for

more reasonable control of cone temperature. With these tem-

perature variations, the expected delay variations over 24 hours
can be calculated from the temperature coefficients and are
shown in Table 5.

It is seen that the main limitations on performance are

probably the loop coupler and temperature control of the
cone area. When the Bethe hole coupler is installed, the PCG

should meet its specification of 10 ps for delay variations over
24 hours. Reasonable control of the cone temperature will

assure that the PCG is well within this specification.

Over a 1000 second period the estimated environmental

temperature changes for the PCG subsystem are taken as:

Transmitter

Cable (from Transmitter to

Receiver)

Cone (includes Receiver,
cable from Receiver to

CGA, CGA, and Coupler)

+0.5Oc

+0.16°C

e0.5°C (_0.16°C)

For the cable and the cone, these estimates are derived by

assuming that the variations shown above for 24 hours occur

linearly over an 8 hour period. From these temperature varia-

tion estimates the expected delay variations over 1000 sec-
onds can be calculated and are shown in Table 6. In Table 6

the calculated delay variations are divided by 1000 sec to

obtain the expected Allan variance.

We can also obtain expected Allan variance for the 20 MHz

output of the cable stabilizer which is used as a reference for

receiver LOs. From the temperature variations shown above

and the previously quoted temperature coefficients the results
shown in Table 7 were obtained.

Note that the cone temperature variation is probably the

primary limiting factor for cable stabilizer performance. If
temperature variations in the Transmitter are significant, an

improvement in performance may be attainable if the cable

bringing the 5 MHz into the Transmitter oven is replaced with

a shorter cable or a phase stable cable.

b. Measured performance. The long term stability of cable

stabilizers was tested in the laboratory with the setup shown in

Fig. 7. This setup measures the phase of the 20 MHz output

with respect to the 5 MHz input. The delay resolution on the

output is about 1 ps. As part of the acceptance testing for each
PCG which has been built, the cable stabilizer is left running

for at least 24 hours and its performance is recorded. The

delay at different points in time is read off the strip chart and
the Allan variance is calculated from these delay points. The

typical Allan variance which has been seen for the 20 MHz

output of the cable stabilizer is shown in Table 8.

Allan variance tests have also been performed on the cable

stabilizer at the Maser Test Facility of the Frequency and Tim-

ing Subsystem Group. For these tests the output of a cable

stabilizer running off one hydrogen maser was compared with
another maser whose output was down-converted to 20 MHz.

The results showed no measurable degradation of the maser

stability. In these tests the Allan variance for each of the
masers alone was 1 × 10-15 over 1000 sec.

The long term stability tests in our laboratory showed that

the long term behavior was dominated by a drift which was
almost linear with time and had a drift rate which decreased

with time. In one typical case, the drift was 41 ps for the first

24 hours, 19.5 ps for the second 24 hours, and 17.5 ps for the

third 24 hours. This drift is caused by the crystal filter. The

crystal filter manufacturer does burn in the crystal filters for

a few months to reduce aging effects. However, each time a

crystal filter is brought up to operating temperature it will

take some time to stabilize. No long term stability tests have

been performed in our laboratory after more than a 3 day

warm-up. However, in normal operation, the oven will be kept
at operating temperature on a continuous basis. This will mini-

mize crystal filter drifts.

3. Phase noise. The phase noise of the cable stabilizer was

measured by mixing the output of two cable stabilizers to-

gether in a mixer. The phase of one cable stabilizer was delayed
in order to zero out the dc component in the mixer output.

The remaining output of the mixer, which is the phase noise,
was amplified and measured. The typical total phase noise
measured in a 3 MHz bandwidth was:

20 MHz output

20 MHz to Leveling-Amp-Gate

0.4 ps

0.6 ps
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The phase noise spectrum was measured at the Maser Test

Facility of the Frequency and Timing Subsystem Group. A
similar procedure was followed except that a digital spectrum

analyzer was used as the measuring device. The typical results
that were obtained are shown in Table 9.

III. Comb Generator

A. Description

The microwave comb generator generates a comb spectrum
from 2 to 10 GHz. The input is the 5/NMHz pulses from the

cable stabilizer which have a repetition rate of up to 1 MHz.

The comb generator uses a step recovery diode (SRD) which is

pulsed at the input repetition rate to generate the comb tones.
Whenever the diode current switches from forward bias to

reverse bias, the diode continues conducting for a time period

equal to r, the minority carrier lifetime, and then very quickly

switches to the nonconducting state in 50 ps. This rapid

change in diode current induces a 50 ps voltage pulse in an
inductor which is in series with the diode. This voltage pulse,

which is the output of the comb generator, has harmonics up

through 10 GHz which are coherent with one another in

phase.

The time of occurrence of the comb generator's output

pulse depends upon the r of the SRD. The r is dependent on
temperature and on the ratio of forward SRD current to
reverse SRD current. The forward and reverse currents of the

SRD are set by a high stability dc bias circuit which precisely

controls their ratio in order to keep r at a value of about
1.5 ns. The temperature coefficient of _"is 1 percent/°C so

the temperature dependence of the SRD would be 15 ps/°C.

A thermistor in the dc bias circuit changes the ratio of the for-

ward and reverse currents in a manner which compensates for
the SRD's temperature dependence at the operating tempera-

ture of 60°C in order to minimize temperature dependence.

Tests of the comb generator have shown that the overall tem-
perature coefficient at 60°C is about 1 ps/°C.

The magnitude of the SRD output can be set by a digital
control word. The forward and reverse SRD currents are

determined by the dc bias circuit which maintains them at

values proportional to the digital control word. The ratio of
the forward and reverse currents is always maintained at the

same constant value except for temperature compensation.

B. Dispersion

The output of the comb generator must have very low dis-

persion, that is, very small deviation from a linear phase ver-

sus frequency characteristic. For VLBI (Very Long Baseline

Interferometry) the performance goal for the comb gener-

ator is to limit dispersion to +0.88 degree over a 400 MHz
bandwidth.

The main cause of dispersion is VSWR in the microwave

circuitry. Consider the cable in Fig. 5 where a signal V is being
sent from the left end to the right end. Any mismatch at the

right end will reflect a signal V' back down the cable with a

reflection coefficient of P2. Similarly, at the left end a signal
V" is reflected back up the cable with a reflection coefficient

of P]" At the right end of the cable the re-reflected signal,
V", will add vectorially to V and alter its phase by an amount

e. This situation is shown in Fig. 6 where the two way cable
delay, 2&¢, is the phase difference between V and V" at the

right end of the cable. Since the cable delay, A¢, is a function

of frequency, the phase deviation of the signal, e, will be a

function of frequency. The maximum positive value of e will

occur when 2A¢ = 90 degrees, and the maximum negative value

will occur when 2&¢_= -90 degrees. The frequency span over

which e changes from a maximum positive value to a maxi-

mum negative value will be the frequency for which the cable

is one quarter wavelength long.

Since it is desirable to make the rate of change of e as small

as possible with respect to frequency, it is best to make the

cable as short as possible. This will be the case when the Bethe

hole couplers are installed in the Deep Space Stations. The

CGA unit will be physically mounted right next to the Bethe

hole coupler. Its output connector will connect directly to the

coupler's connector with no intervening cable. The effective

cable from the comb generator output to the coupler will then

be about 15 cm long. The resultant frequency span from maxi-

mum positive e to maximum negative e will be about 300 MHz.
Thus, e will always have at least one maximum in a 400 MHz

frequency span. In order to meet VLBI requirements, the

maximum e should be less than 0.88 degree. The maximum
value of e can be determined by putting 2Acp = 90 degrees into
Eq. (12) to get

e = tan -1 (pip2) (21)

or

pip2 = tane (22)

For e < 0.88 degree

pip2 < 0.0154

Consider

/91 =.o 2 =,o
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Then

p < 0.124

So from Eq. (19) the requirement on the VSWR is

S < 1.28

The coupler which injects the comb tones into the micro-

wave receiving system must meet this requirement. The comb

generator output must also meet this requirement. Since the

SRD is a very poor match to a 50 ohm line, the comb gener-

ator has a 10 dB attenuator on its output to isolate the SRD
from the line. The output VSWR of a 10 dB attenuator is

always <1.25 no matter how poor its input match. The line
from the SRD to the 10 dB attenuator input has a poor match

at the SRD end, but its length is kept very short (<3 mm) so

that the phase variation with frequency is minimized.

C. Performance

The long term stability of the comb generator has been
measured with the setup shown in Fig. 8. A PCG Transmitter

and Receiver were set up with a Comb Generator inside the

Receiver. A second comb generator inside a separate oven was

also connected to the Receiver's cable stabilizer output. A

power switch operating off a 1 pulse per second (1 pps) signal

alternated power between the two comb generators so that

one comb generator operated on even seconds and the other

comb generator operated on odd seconds. A power combiner

connected the outputs of the two comb generators to a re-
ceiving setup consisting of a microwave receiver, IF Converter,

and Formatter to down-convert the microwave signal and
digitize it. The digital data stream went to a Digital Tone

Extractor (DTE) which determined the phase of the phase

calibration tone. The DTE was synchronized with the 1 pps
and determined the phase every second by integrating over the

last half of each second. This allowed the phase of each comb

generator to be tracked separately over time.

Two tests were performed with the test setup. In the first

test the temperature coefficient of the comb generator was

determined by varying the set point of the second oven and

observing the change in relative phase of the two comb gener-

ators. In the second test the oven temperatures were held con-

stant and the phase behavior of the two comb generators was

recorded over time. The Allan variance of the phase difference

between the two comb generators was determined for various

time intervals. This Allan variance was divided by the square

root of 2 to determine the Allan variance for a single comb

generator. The results of these tests are shown in Table 10. It

can be seen that the stability of the comb generator is signifi-

cantly better than the cable stabilizer. Thus, for the entire

PCG the stability is limited by the cable stabilizer.

IV. Very Long Baseline Interferometry
Results

In field usage the PCG has proven to be very useful and in

some cases invaluable for improving the quality of VLBI data.
Analysis of VLBI experiments in which the prototype PCG

unit was used at Deep Space Station 13 has been performed

by Chris Jacobs at JPL. For phase delay tests in the 8.4 GHz

(X) band, he found that application of phase calibrator correc-
tion to the data reduced noise, thus making it easier to resolve

ambiguities and connect phase points. In another experiment,
the Traveling Wave Maser (TWM) was drifting badly and had to

be retuned often. Application of the phase calibrator correc-

tion saved this experiment.

Some results of another experiment which was saved by

the PCG are shown in Figs. 9 and 10. In this experiment the

differential group delay between Deep Space Station 13 and

45 was being determined using 40 MHz Bandwidth Synthesis

(BWS). The TWM at station 13 was erroneously set to 20 MHz

bandwidth so that all the BWS channels being recorded were

outside the TWM bandwidth. The differential group delay over
time for the two outermost BWS channels is shown in Fig. 9.

At each point the error bar due to system noise is shown.

For the first part of the experiment it can be seen that the

drift over time is large compared to the error bars, thus degrad-

ing the data. The same data after phase calibrator correction

is shown in Fig. 10. It is seen that the drift is virtually gone.

Without the phase calibrator correction there were many points

for which the ratio of group delay error to system noise was

on the order of 30. Phase calibrator correction dropped this

ratio to less than 1, thus making the data usable.
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Table 1. Amplifier non-linesrity: f = 20 MHz

Second harmonic attenuation

from fundamental (dB)

Zero crossing shift

Amplitude change
(ps/dB)

40 8

50 2.5

60 0.8

70 0.25

75 0.14

80 0.08

Table 2. Cable change measurement error due to VSWR

Error
VSWR

(ps)

1.05 1.18

1.10 4.52

1.15 9.74

1.20 16.5

1.25 24.7

Note: Worst case error in measurement of 1 ns change in cable delay.

Table 3. Temperature coefficients for modules

Module

Temperature

coefficient

(ps/°C)

5 to 20 MHz converter 1

10 dB amplifier 3

20 dB amplifier 6

10 dB amp-filter-coupler 25

20 dB amp-filter 29

1st crystal filter 10-14

2nd crystal filter 3-5

Leveling-amp-gate 2

Comb generator 1

Table 4. Field test of cable correction ability conducted at Gold-

stone Deep Space Station (cable delay increased by 4.3 ns)

Frequency N Cable correction Correction
band error (ps) ability

2.2 GHz (S) 5 4.4 977

2.2 GHz (S) 10 34.9 123

8.4 GHz (X) 5 11.9 361

8.4 GHz (X) 10 27.3 158

Table 5. Expected 24 hour stability for comb tone output

Component Delay variation (ps)

Transmitter ±0.6

Stabilized cable ± 1.9

Receiver *-7.5 (-*2.5)

Cable to CGA ±3.0 (-* 1.0)

CGA +-0.15 (-+0.05)

Coupler Loop +-15.0 (±5.0)

RSS 17.2 ps (6.0 ps)

Bethe -+1.5 (±0.5)

8.5 ps (3.4 ps)

Note: Numbers in parentheses indicate performance with moderate

temperature control of cone.
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Table 6. Expected 1000 second stability for comb tone output

Component Delay variation (ps)

Transmitter ±0.3

Stabilized cable ±0.06

Receiver ±0.25 (±0.08)

Cable to CGA +0.1 (±0.03)

CGA ±0.005 (±0.002)

Coupler Loop ±0.5 (±0.16)

RSS 0.65 ps (0.36 ps)

Expected Allan
variance
(1000 sec) 6.5 × 10 -16 (3.6 X 10 -16)

Bethe 50.05 (±0.016)

0.41 ps (0.32 ps)

4.1 × 10 -16 (3.2 x 10 -16)

Note: Numbers in parentheses indicate performance with moderate temperature control of cone.

Table 7. Expected 1000 second stability for 20 MHz output

Component Delay variation (ps)

±0.3

50.06

50.4

0.50 ps (0.33 ps)

Transmitter

Stabilized cable

Receiver (±0.13)

RSS

Expected Allan
variance

(1000 sec) 5 X 10 -16 (3.3 × 10 -16)

Note: Numbers in parentheses indicate performance with moderate

temperature control of cone.

Table 9. Measured phase noise spectrum: typical values for
20 Ml-lz output

Frequency offset Phase noise in 1 Hz bandwidth
from carrier (Hz) (dB from carrier)

1 -107

10 -118

100 -125

1000 -125

10,000 -130

Table 8. Measured stability of 20 MHzoutput

Time interval
Allan variance

(sec)

1 1.5 × 10 -13

10 2 × 10 -14

100 3 × 10 -15

1000 4 × 10 -16

10,000 1 x 10 -16

Table 10. Measured comb generator stability

Temperature coefficient: 1 ps/°C

Allan variance: 3 X 10 -16 over 100 sec

7 X 10 -17 over 1000 sec

1 X 10 -17 over 10,000 sec
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This article describes a much-simplified, yet more general-purpose multi-channel

deep-space ranging system correlator design than has been used in past JPL spacecraft

ranging systems. The method applies to detection of both single-component and multiple-

component ranging codes, in either sequential (lz) or composite (r) transmitted forms,

and using either pseudonoise or square-wave components. Using this design, the Phobos

Probe ranging system correlator computational complexity was reduced by over three

orders of magnitude in multiply-and-add circuits and 45,000 bits of accumulator storage.

I. Introduction and Background

JPL Spacecraft ranging systems transmit, from the ground

to the spacecraft, a periodic code x(t) modulated on the

uplink carrier. This signal received by the on-board trans-

ponder, is demodulated and retransmitted via the downlink

to the ground station. The received version of the transmitted

code at the ranging demodulator assembly interface appears

attenuated by a factor _, delayed by the round-trip light-time

r(continuously changing due to the earth and spacecraft rela-

tive velocity), and immersed in noise, n(t). Symbolically,

y(t) = ax(t- r) + n(t) (1)

Present DSN ranging systems [1] use the two-way detected

Doppler signal from the receiver to program the clock oscilla-

tors of the receiver codes, generating replicas of the transmitted-

code component(s) to maintain a constant value of r between

the received signal,y(t), and the local receiver codes.

The optimum [2] estimate in the maximum-likelihood

sense, 7, for the time delay r over agiven observation interval

[0, T], set by ranging accuracy requirements and the incoming

signal-to-noise ratio, 1 is that value maximizing the cross-

correlation integral

fo T
It.. = y(t)c(t -_) dt

(2)

1Typically minutes to hours in duration.
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where c(t) denotes a particular code component of the trans-

mitted signal, x(t). Computation of I_. thus requires a ground

receiver channel equivalent to the form shown in Fig. 1.

To determine ?, a set {_/:i = 0 ..... N - 1} of candidate
code-delay values is chosen and used to measure corresponding

"correlation4ag" values {Ig.:i = 0 ..... N - 1}, which are then
inserted into a maximum4ikelihood formula for determining ?.

The ranging codes are binary +l-valued signals having a

symbol-interval time we denote by to . As explained in a com-

panion article [3], the transmitted waveform is either a
Boolean function of several pseudonoise [4] binary sequences

running in parallel (the so-called composite-code approach [ 1] )

or a sequence of binary square waves of increasingly short
periods (the sequential-code approach). For historical reasons,
these were dubbed "r" and "p" methods, respectively.

The first planetary ranging system [5] utilized a combined-

component-code uplink scheme that required 77 receiver
correlations, but only had 2 channels. It was used on Mariner

missions from 1969 through 1973, and was then replaced
by sequential-component-code machines [1 ] because of their

superior ranging acquisition time advantage of some 12 dB
with only 2 correlation channels, at some extra complexity in

receiver code switching and housekeeping logic, and at a

modest 1.75-2.75 dB loss factor from the optimum matched

filter performance.

The acquisition-time advantage of the la system came from

the feasibility of building ranging correlator channels for each

of the needed ri of the/a code (viz., 2). The r scheme would

have required 77 such channels, a need without cost justifica-
tion in that era. The merits of the various transmitter codes

and receiver detection schemes are adequately treated else-

where [1 ], [4], [6], and are not further discussed here.

For determining the phase of incoming symbol transitions,

a "clock" component, or period-2 code, is transmitted in both

r and/a systems. The receiver correlation delays are chosen to

be? o = 0 and_ 1 = to/2, withN = 2.

For a pseudonoise-sequence code [6] of period p bits, the

candidate delay values are ?/= it o/k for i = 0 ..... N - 1, with
N = kp. The integer k may be 1 or 2 or more, depending on
the transmitter encoding and the method used to determine

the received symbol-transition phase, i.e., the code clock

delay.

In any case, in order to compute the N values required,

either N correlator channels are required to calculate the _ in

parallel, or some lesser number may be used serially, but

thereby increasing the acquisition time (equivalently, lowering
the effective signal-to-noise ratio).

II. Conventional Ranging Detectors

Conventional DSN ranging correlators are made up of

analog and digital hardware and software that mirror the direct

calculation of the integral above. Separation into analog and

digital portions derives from the following transformation of
the correlation integral:

= %. y g
j=O

(3)

where the integration time T is assumed to be a multiple of the

period, the code delay _. is assumed to be a multiple of the

fractional symbol interval, and the coefficients _. represent the
-+1 code symbol values,

T = Mpt o = Mpkto/k

?i = ito/k

c] = c when i./'/k_l = Lm/kl (mod p)

ck] = cO'to) for] = 0,... ,p- 1

The integral thus represents the sum of integrations of the

incoming signal over fractional code symbol intervals, multi-

plied by the appropriate code symbol values over those inter-
vals. One such sum is required for each channel delay _., and

all multiply's and add's occur in parallel with each other.

The conventional design of a multi-channel range detector

is depicted in Fig. 2. Both the old _-and later ta machines used

this design, with 2 physical correlator channels. Integration

over fractional symbol times is performed by analog hardware,

and only one such integrator is needed. The integration value

is sampled and converted to a digital number, multiplied by

the N delayed code -+1 stream values, and added to the con-
tents of N accumulators, once each fractional symbol time.

Since k consecutive cj_ i values are equal, these sample
values may be preaccumulated before multiplications, if

desired. This, in fact, is done in the current DSN Spacecraft

Ranging System. However, the high-speed logic required for

processing the pre-accumulation and subsequent parallel

multiply-and-add operations contributes significantly to the

ranging assembly cost.
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The advent of fast, custom-made, Very Large Scale Inte-

gration (VLSI) components has made it possible, albeit still

moderately costly, to build many more correlator channels

using the same form of digital design as shown in Fig. 2, so

that all the needed correlation-delay values can be accumu-
lated digitally in parallel [3].

As a case in point, the ranging uplink design for the Phobos

Probe mission uses a pseudonoise code of period 2047, trans-
mitted at about 1.2 X 10 6 symbols per second. A ranging

correlator design using the conventional approach, using
only k = 2 samples per code symbol, would require nearly

5 X 10 9 multiply-and-add operations per second. In fact, a

preliminary design using the conventional approach was

made; it required a massively parallel pipelined architecture

utilizing the fastest available memory circuits, and still had to

resort to 1-bit quantization of the input signal in order to

simplify the multiplier design, with a corresponding 2 dB

loss in signal-to-noise performance.

The economics and technology requirements of this con-

ventional approach thus place limits on the code period and

performance that can reasonably be expected.

III. The Simplified Digital Correlator

In this section, we note that the correlation integral may be

further transformed to reverse the order of digital accumula-

tion and multiplication in calculating the various needed

measurements. The advantage of this reversal, as we shall see,

is that it reduces the amount of high-speed digital logic and

custom-VLSI chips needed, removes almost all of the ranging
code dependency from the ranging demodulator hardware,

and makes possible the design of a general-purpose ranging
demodulator capable of accumulating thousands of correlation-
lag values.

By making use of the periodicity of the receiver code, the

correlation integral may be further transformed into the
equation

.., k,--E 5-, y'+
j=O m =O '.'O

or merely

dt

(4)

pk -1

_^. = E cl'-iA]
l

j=O

(5)

where A i represents the accumulation of integrate-and-dump
values,

A� = m_o y t + dt
= _0

(6)

The revised correlator depicted in Fig. 3 utilizes pk accumula-

tors for the (Ai, / = 0 ..... pk - 1) values. Note that each
integrator sample output is added only into one of the accu-
mulator channels, switched by the accumulator index/, each

to/k seconds. Because of this simplification, only one adder is
required for all the accumulators corresponding to this receiver

code, as shown in Fig. 4. This functionally saves pk - 1 multiply-

and-add logic circuits (4093 of them for the Phobos Probe

mission).

For each integrator sample, the corresponding accumulator

is fetched, added to the sample, and restored into memory.

Each accumulator is only accessed once each pt o time interval.

Using this technique, the redesigned Phobos Probe ranging
correlator requires only 2.4 × 106 additions per second. As a

result, conventional Random Access Memory circuitry can be
used to hold the values.

Moreover, the accumulators are in jeopardy of overflow

only lip as much as in the conventional design. Consequently,

each accumulator can be shorter by log2(p ) bits than those of
the conventional design. This represents an additional logic

savings of pk log2(p) bits, or about 45,000 bits (5600 bytes)
in the Phobos Probe ranging correlator storage.

The address generator is merely a counter clocked at the
code fractional symbol rate and reset at the beginning of each

period of the receiver code. This is the only code-dependent

signal entering the digital portion of the design. Except for the
number of lag-value accumulators, the digital portion of the

correlator assembly is completely independent of the receiver

code cbmponents. No receiver coder hardware is necessary.

Conventional deep-space ranging correlators required hard-
ware code generators for each of the different receiver code

components.

Code multiplications are not made until after the complete

accumulation of A/ values has been read into the computer
of the ranging assembly. Then the same A i set serves to calcu-

late all of the _. for i = 0 ..... N - 1. The vector I containing

the 1_. is related to the vector A of accumulator values A i by
the equation

I = CA (7)
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where C is the N × kp matrix of binary code values, ci, j = ej_ i.
Since the receiver codes are stored solely in the computer
memory as C, since the vector I is computed separately from

the accumulation process, and since this computation only

needs to take place infrequently, there is a greater degree of

flexibility and generality in the simpler design than existed in

the previous ranging assemblies.

IV. Conclusion

This article has presented a design simplification for the

digital hardware design of a deep-space binary-code ranging

system. The simplification is significant in that it

(1) Makes use of easily obtainable RAM storage, one

memory location for each correlation lag to be accu-

mulated, accessed serially, rather than special VLSI

devices or high-speed-logic circuits accessed in parallel;

(2) Reduces the high-speed digital logic requirements to a
single sample accumulator and adder, regardless of the

number of correlation lags computed, representing a

savings of pk - I multiply-and-add circuits;

(3) Reduces the number of bits required by each accumu-

lator by log2(p ) bits each, for a savings ofpk log2(p )
bits for the entire correlator;

(4) Makes the analog and digital portions of the system

independent of both the transmitter and receiver

codes, except for timing signals;

(5) Removes the need for receiver coders (simple period

counters will do); and

(6) Stores the receiver code component(s) as a vector

in the ranging computer, where the accumulated

correlation-lag values are computed by a single simple
matrix multiplication, infrequently calculated.

Using this approach, the new Phobos Probe mission ranging

system design uses no special components, is smaller, is easier
to design and maintain, and does not need to 1-bit quant'ize

the input signal. The details and particulars of the correlator

design will be the subject of a subsequent article.
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This article describes the analysis used to generate the theoretical models showing the

performance of the frame synchronizer for various frame lengths and marker lengths at

various signal-to-noise ratios and bit error tolerances.

I. Introduction

The telemetry data stream from a deep space mission, usu-

ally many hundreds of thousands of bits long, is divided into

units called "frames." Each frame is introduced by a "marker"

(generally 32 bits long, but not always) announcing the frame
boundary. Until now, the Deep Space Network (DSN) has sent

the data stream to the projects without regard to frame

boundaries.

The DSN is beginning to install "frame synchronizers"
which look for markers and divide the data into frames. Begin-

ning with Magellan, the DSN will deliver data to the projects

already divided into frames. The currently planned configura-

tion is for these frame synchronizers to work on decoded

information bits; therefore, they must follow the Viterbi de-

coder (see Fig. 1). See [1] for a discussion of the relative

merits of frame synchronization before and after Viterbi

decoding.

The technical problems of dividing a noisy data stream into

frames are probabilistic, depending on the channel. When the

data stream arrives, a search for the marker is conducted. How-

ever, because of channel noise, the marker might be corrupted;

on the other hand, the actual data within the frame might

include 32 bits that are exactly the same as the marker. Thus,

when looking at the data, the frame synchronizer needs to
decide which bits most likely represent the marker in order to

decide where the frame begins.

II. The Frame Synchronizer

Before describing the Frame Synchronizer Subassembly

(FSS), what is meant by "finding" the marker must be
established.

Since it is likely that a marker may contain errors due to

normal deep space communications noise, a match is "found"

when a string of bits disagrees with the marker in no more

than T places, where T is the Bit Error Tolerance (BET)

threshold [2]. If more than T errors are made in the frame

sync word, then it will be "missed." The "best match" is the

string of decoded bits disagreeing with the marker in the few-

est places. During the search for the frame sync marker (see

below), if the minimum error detector (MED) is enabled, then

the best match identified in one frame length is used as the

marker. Otherwise, the first match is used. (If errors in the
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decoded bit error stream were independent, then the best

match would most likely be the marker. See [2] for another

method taking Viterbi decoder error statistics into account.)

After a possible marker is identified, the data stream is

examined at a point one frame length away for another marker.

If a match is found, then the marker is considered verified

once. This process may be repeated for various numbers of
verifications.

The frame synchronizers in the DSN use the following

algorithm (see Figs. 2 and 3), given T = BET, K = the number
of verifies, and N = the number of flywheels:

(1) SEARCH: Search the data stream until a possible

marker is found with fewer than T disagreements with

the marker. If the MED is enabled, continue the search

for one complete frame length.

(2) VERIFY: Examine the data stream at a point one

frame length away for another marker. If the match is

within T of the marker, continue the verification;

otherwise return to step 1. If K verifications are suc-

cessful, then "frame in lock," or sync, is established.

(3) LOCK: Continue testing the marker. If more than T

errors are found, enter the flywheel mode. FSS has

sync while in this mode.

(4) FLYWHEEL: Determine whether the sync is lost by

testing up to N consecutive frames. If the marker is

found within the N frames, then sync is reestablished

and the FSS returns to step 3. Otherwise, return to

step 1.

III. Analysis and Probabilities

In analyzing the probability of finding the sync marker,
only two cases were considered: (1) the probability of frame

acquisition within F = 4 frames with K verifications (K = 3,
2, or 1) and the MED enabled; and (2) the probability of

frame acquisition within F frames (F = 1,2, 3, or 4) with no
verifications and the MED enabled.

Using data from Table C-1 of [3] (Viterbi Decoder Burst

Statistics: 3233013 [7, 1/2] Convolutional Code), error dis-

tribution data was generated by simulation and used to deter-

mine the probabilities for the number of errors made by the

Viterbi decoder during a 32-bit span of bits, and thus the

probabilities of different numbers of disagreements between
the decoded marker and the true marker. Below, D is used

for the number of disagreements between the decoded marker

and the true marker, so P(D =/) is the probability that the
Viterbi decoder makesj errors in the marker.

The binomial probability distribution with p = 1/2 was used

to determine the probabilities for the number of disagreements
between 32 random bits and the marker. R is the number of

disagreements between 32 random bits and the markers, so

The analysis below assumes that in all cases of "ties," i.e.,

the same number of disagreements in two places, the frame

synchronizer makes the wrong decision. This means that actual

performance will be slightly better than that predicted below.

Variable

T = threshold

L = frame transport length

F = number of frames

K = number of times sync

is verified after finding
the initial marker

Typical values

0_T_32

L =5120, 6720, 480, 16320

F= 1,2,3,4

K= 1,2,3

A. Probability of Frame Acquisition Within F = 4
Frames With K Verifications

With K = 3 verifications and F = 4 frames, the marker must

be found correctly in each of the frames:

P(sync found correctly and verified 3 additional times)

---P(sync found correctly in first frame and verified 3 times)

Assuming independence between frames, this is

P(sync found correctly) • [P(verified)] 3

T

--E
j=O

P(D=j). [P(R >j)] L. [P(D<T)] 3

A large assumption is implicit in the use of [P(R >j)]L for
the probability that the marker is never found in random data.

Finding the marker in different places in random data is not

independent unless the places are at least a marker length
apart. The actual probability that the marker is found in ran-

dom data is at least 1 - 32(1 - [P(R >/)] L/32), which is close

to [P(R >/)]L for small/. As j increases, these quantities
begin to differ, but the contribution to the sum becomes

small. An actual calculation of the probability of finding the
marker with up to/ disagreements somewhere in a frame is
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analytically intractable, and approximation by simulation uses

a great deal of computer time (see [1] ).

The probability that fewer than T errors are found in the
sync word 3 times in a row is [P(D < T)] 3, assuming indepen-
dence between different frames.

With K = 2 verifications and F = 4 frames, sync can be

declared correctly in two ways:

P(sync found correctly and verified 2 additional times)

= P(found correctly in 1st frame and verified twice)

+ P(found correctly in 2rid frame and verified twice,
not found in 1st frame)

= P(found correctly in 1st frame and verified twice)
+ P(found correctly in 2nd frame and verified twice)

• P(not found anywhere in 1st frame)

=P(found correctly and verified twice)
• (1 +P(not found anywhere in 1st frame))

T

=E P(D=J)" [P(R >/)]L. [p(D<T)]2
/=o

1 + P(D > T). [P(R > T)] L 1

With K = 1 verification and F = 4 frames, sync can be

declared correctly in five ways:

P(sync found correctly and verified 1 additional time)

P(found correctly in 1st frame and verified once)

+ P(found correctly in 2nd frame and verified once,
not found in 1st frame)

+ P(found correctly in 3rd frame and verified once,

not found in first two frames)

+ P(found correctly in 3rd frame and verified once,
found correctly in 1st frame, but not verified)

+ P(found correctly in 3rd frame and verified once,
found incorrectly in 1st frame, but not verified)

= P(found correctly and verified once)

• {1 +P(not found anywhere in 1st frame)
+ P(not found anywhere in 1st and 2rid frames)

+ P(found correctly in 1st frame, but not verified)

+ P(found incorrectly in 1st frame, but not verified))

T

= _ ?(D =/)[?(R >/)]L. [?(D < r)]
/=0

• tl+P(D>T)" [P(R>T)IL

+ [e(D> T). [?(R > T)L] :

T

+ E P(D =/)" [P(R >])]L . P(D> T)

/=o

+P(D > T) .(I- [P(R > T)]L) •P(R > T) 1

Two sets of graphs can be generated from the data. One set
is a function of SNR, the other a function of BET.

B. Probability of Frame Acquisition Within F Frames
With No Verifications

WithF= 1 frame:

P(sync found correctly in 1 frame)

T

= _, ?(D:/). [?(R>/)]L
/=0

With F = 2 frames:

P(sync found correctly in 2 frames)

= P(found correctly in 1st frame)

+ P(found correctly in 2nd frame,
not found in 1st frame)

T

=E P(D=])" [P(R >/)]L
/=0

• II+P(D>T)[P(R>T)]L I

With F = 3 frames:

P(sync found correctly in 3 frames)

=/'(found correctly in 1st frame)

+ P(found correctly in 2nd frame,
not found in 1st frame)

+ P(found correctly in 3rd frame,
not found in first two frames)
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T

=__ P(D=/). [P(n >j)] L
j=O

11+ ?W > T)[e(R > T)]/_

+ [P(D> T)[,o(R > T)]L]: I

With F = 4 frames:

P(sync found correctly in 4 frames)

= P(found correctly in 1st frame)

+ P(found correctly in 2nd frame,

not found in 1st frame)

+ P(found correctly in 3rd frame,

not found in first two frames)

+ P(found correctly in 4th frame,

not found in first three frames)

T

=_"_.e(D=/). [p(R >/)] L
/=0

• {1 +P(D>T)[P(R >T)] L

+ [P(D > T) [P(R > T)] L ] :

+ [P(D > T) [P(R > T)] L ] 3 t

IV. Frame out of Lock

The probability of Frame out of Lock occurring at least N
consecutive times is as follows:

Frame Error Distribution: P(D > T)

Frame out of Lock: [P(D > T)] N N = 1, 2, 3, 4, 5

V. Numerical Results

Figures 4 through 6 generated by the models represent the

two main operating FSS modes: (1) "Frame Acquisition,"

comprising the Search and Verify modes; and (2)"Frame in

Lock," comprising the Lock and Flywheel modes.

Many curves, using different parameters, were generated,

but only three representative curves will be included here.

Figure 4 shows the probability of frame acquisition within

F = 4 frames with two verifications versus bit signal-to-noise

ratios (SNR or Eta/No) for various BETs. Figure 5 shows the
probability of frame acquisition within F = 4 frames with
SNR = 2.1 dB versus the BET for various numbers of verifi-

cations. Figure 6 shows the probability that the marker is

corrupted by more than BET errors N = 2 times in a row ver-
sus the bit SNRs for various BETs.

Figures 4 and 5 give probabilities of "Frame Acquisition,"

while Fig. 6 gives probabilities of "Frame out of Lock," the

opposite of "Frame in Lock." It is easy to see that the num-

ber of combinations of parameters is far too great to allow a
full set of graphs to be included here.

All of these graphs are based on the "geometric model"

for Viterbi decoder burst errors, and on the statistics in [3].

VI. Conclusions

Several parameters may be chosen when operating the
Frame Synchronizer Subassembly. Some of these are T, the bit

error threshold which specifies the maximum number of dif-

ferences allowable when declaring a set of bits the frame sync

marker, K; the number of verifications needed before declaring

the stream of bits in lock; and N, the number of flywheels to

go through before declaring a stream out of lock. The operator
must also set the length of the marker and the length of the
frame.

There is no obviously best choice for T, K, and N because

each one gives a trade-off between the probability of incor-
rectly declaring lock and incorrectly not declaring lock; the

merits of the two competing factors must be weighed. How-
ever, the graphs at the end of this report should help in making

that decision by giving probability estimates in several cases.

The results of this study are summarized in the graphs.
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A new design for a noise-adding radiometer will be included as part of the reimple-
mentation of the Parkes antenna microwave front end. Designed as an aid for antenna

calibration, the Parkes NAR will support the Voyager-Neptune encounter in 1989.

I. Introduction

During the upcoming Voyager-Neptune encounter, the

64-meter Australian National Radio Astronomy Observatory

at Parkes will once again assume the role of a DSN tracking

station as part of the Parkes-Canberra Telemetry Array

(PCTA). As with the earlier Uranus encounter, this requires

outfitting the antenna with DSN-compatible hardware, ranging
from microwave feedhorn to telemetry receiver. Although
much of the hardware used during the previous encounter will

be reimplemented for the Neptune encounter, the European

Space Agency (ESA)-designed front-end monitor and control

system will be replaced with a new system designed by JPL.

Among the ESA features that will be duplicated by the new
Parkes Front-End Controller (FEC) is a Noise-Adding Radiom-

eter (NAR), a device used to measure antenna system tempera-
ture. Its operation is based on the fact that receiver noise

power is directly proportional to temperature. Thus, measur-

ing the relative increase in noise power due to the presence of
a calibrated thermal noise source allows direct calculation of

system temperature. Although it is intended primarily to aid

pre-pass antenna pointing calibration procedures, the Parkes

NAR will also be capable of monitoring system temperature

during telemetry tracks without significant degradation

through the use of low-noise diodes.

II. System Configuration

The NAR implemented as part of the monitor and control
for the Parkes antenna front end will consist of two basic

subsystems: an array of noise diodes, located in the aerial

cabin, for injecting noise into the system, and a precision

power meter, forming part of the FEC computer, for measur-
ing noise power. The noise diode assemblies are DSN standard

equipment duplicates of the diode ovens and power supplies
that form part of the DSN Precision Power Monitor (PPM)

assembly. The Digital Power Meter (DPM), a new design, is a

functional replacement for the PPM's square-law diodes,

employing digital signal processing techniques for noise
measurement.

The heart of the system is the Parkes FEC, an 86/14-based

multibus computer containing the DPM and configured for
monitor and control of the front-end microwave electronics

(Fig. 1). The FEC's tasks will include remote control of the

noise diode assemblies and operation of the DPM for perform-
ing NAR temperature measurements.

Two noise diode assemblies will be provided for the Parkes

antenna, one for each of the two X-band receive chains. Each

assembly consists of a noise diode oven and associated power

supply. Each oven contains three diodes, providing noise tern-
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peratures of approximately 0.25, 0.5, 1, 2, 4, 8, and 50 K

(defined at the maser input). The diodes are controlled

through their power supply assemblies, with relays being used

to select the amount of diode current (allowing three noise

levels per diode); a fourth TTL signal is used to modulate the
diode on and off.

Each power supply assembly is monitored and controlled

through 21 digital I/O lines, consisting of relay closures, clos-

ure sense, and diode modulation input. Both assemblies will

be operated through an HP 3488A switch/control unit con-

taining three HP 44474A digital I/O cards (16 channels per

card). A coaxial cable run directly from the FEC will supply

the modulation control signals.

Noise power measurements will be made at the inputs of
the Parkes telemetry receiver. Each of the two 320-MHz RF

signals will be split 3 dB in the receiver signal select drawer

and then fed directly to the DPM in the FEC. The DPM con-
sists of three multibus PC boards under FEC control that

sample the inputs and accumulate measured power values. An

averaged output is read over the bus by the FEC 86/14 CPU.
Diode control, noise measurement, system temperature

computation, and an analog output will all be handled by the

CPU, with results included in FEC status displays.

III. Parkes NAR Operation

Noise-adding radiometers operate by periodically injecting

a known quantity of noise into an antenna front end and then

measuring the resulting increase in system noise power at the

receiver. System temperature measured this way can be used

for antenna pointing calibration (star tracking), system perfor-

mance history, and spacecraft power measurement. Because

these tasks usually require a continual stream of system noise

temperature data, the Parkes NAR will measure noise levels

and compute temperature repeatedly, and will return its

results to the antenna pedestal in both digital and analog form.

The Parkes NAR operates by selecting a noise diode and
diode current needed to achieve a desired additive noise tem-

perature and then modulating the diode on and off while

measuring power at the Parkes telemetry receiver. Two noise

power measurements are needed to calculate system tempera-
ture: one while the diode is on and one while it is off. A sim-

ple calculation based on the diode temperature and the two

measured values yields the unknown system temperature.

Although noise power measurements for NAR operation
are ideally taken from the telemetry receiver IF, it will not be

practical to do so in the case of the Parkes NAR. Measurement

using the PCTA receiver 70-MHz IF would require operating

the receiver subsystem in addition to the FEC. However, by

taking measurements at the receiver 320-MHz inputs, the NAR

becomes independent of PCTA operation. As seen in Fig. 1,

the use of 3-dB power splitters within the receiver signal select

drawer provides the needed signals.

The measurement process begins with control of the noise

diode assemblies. This will be done using an HP 3488A switch
control unit, rather than a PPM Noise Diode Controller assem-

bly. Operated remotely over the IEEE-488 GP-IB bus, the HP

3488A sets the power supply relays that control diode current

and monitors the relay closures to verify proper settings.
Diode modulation is controlled directly by the DPM in coor-

dination with noise power measurements.

Software operation consists of selecting the desired noise

diode temperature (approximately 0.25, 0.5, 1, 2, 4, 8, or 50

K), selecting the desired measurement rate, and programming

the type of analog output desired. System temperature read-

ings will then be available through either status polls or time-
dependent graphs. The entire process is initiated and timed by

the FEC CPU, which includes in its loop a routine to drive a

digital-to-analog converter with the results of the calculations.
This analog output will be fed back to the antenna calibration

facility in the antenna pedestal.

Within the FEC, the DPM (Fig. 2) performs noise power

measurements in a fixed bandwidth of 320-340 MHz by

averaging the square of a large number of sampled noise vol-

tages. Under CPU control, an RF switch and a programmable
attenuator select the input channel and adjust the noise level

to a fixed gain. The attenuator not only has sufficient range

for expected noise level variations but can also adjust for
inputs from the antenna's ambient load, and will be used for

making Y-factor measurements. Next, an on-board local

oscillator fixed at 330 MHz mixes the input down to base-
band, which is then low-pass filtered at 10 MHz. An 8-bit

analog-to-digital converter generates the digital samples of the
noise voltages, which are then fed at 20 MHz to a 34-bit-wide

multiplier/accumulator for squaring and averaging. The result-

ing total noise power value is read from the board directly by
the CPU.

Timing and control for each measurement is handled by the

DPM; the CPU is needed only to read the resulting averaged

noise power and to reinitiate the measurement process. The

measurement time is variable and can be controlled by the
CPU; measurement rate is determined'by how often the CPU

initiates the process. An interrupt and a status flag are avail-

able to signal the CPU each time the process is completed.

In order to achieve both a short measurement time and

high accuracy, a total of 218 samples (nominally) are taken

118



at a rate of 20 million samples/second, yielding a 13-ms
measurement time and a sampling accuracy of 0.2 percent.

(Nyquist sampling theory does not apply to this case, since

only noise power is of interest, not the ability to reQonstruct

waveforms.) Total time overhead includes an additional 2 ms

"dead time" between the switching of the diodes and the start

of each measurement; this gives the system a chance to settle

and allows the CPU ample time to compute the results and
restart the process. (Figure 3 diagrams the software loop

timing coordinating FEC operation and NAR measurements.)

Given that two noise measurements must be made to compute

system noise temperature, with four measurements between

switching, the nominal sampling rate for these Top measure-
ments is then twice (4 × 13 + 2) ms, or 9.5 Hz. Resolution is

controlled through averaging of the Top samples.

Periodically during NAR operation, the FEC ir_serts an
extra measurement in the loop for determining i_ offset.

This is done by computing an average of noise voltage samples

rather than the square of samples. This offset is used to elimi-

nate the DC component from the total noise power measure-

ment, yielding a purely AC noise power figure for computing

Top.

One advantage to implementing the NAR within the Parkes

FEC is that the system can be either operated in a stand-alone

mode in conjunction with the other front-end equipment or
automated within the entire PCTA Receiver/Combiner subsys-

tem. The range of low-noise diodes provided in the PPM diode
assembly allows the use of the NAR during telemetry tracking

with minimal degradation of telemetry data. Integrated sys-

tem operation will be available to the Parkes receiver for real-

time temperature measurement, and to CDSCC for remote

operation and/or monitoring of system performance.

A second advantage provided by the FEC/DPM is the abil-
ity to coordinate with the Parkes front-end equipment during

test/calibration procedures. The DPM has sufficient range to

measure noise power from the antenna's ambient load as well

as the cold sky. This makes it possible to reference the am-

bient load for calibrating the diodes and compensating for

system nonlinearities using any one of several techniques [1].

Since the FEC controls the front-end equipment in addition
to the NAR, waveguide switching, maser selection, and DPM

operation can all be controlled by one program, either with a

backup CRT terminal in a stand-alone mode post-pass or auto-

matically as part of a PCTA precalibration configuration con-
trol file.

IV. NAR Temperature Calculations

Given the fact that noise power and noise temperature in

an antenna system are directly proportional to one another,

two equations can be formed from the presence and absence
of a known additive noise source:

"Do. = k(Top)

where

eff = system noise power with noise diode off, W

Pn = system noise power with noise diode on, W

T = operating noise temperature, K
op

Ta = noise diode temperature, K

k = proportionality constant, W/K

Combining these two equations to eliminate k,

---- l+--

,Do. top top

Rearranging yields

T =

Thus, making two noise power measurements using a diode

of known temperature allows a direct calculation of system

noise temperature insensitive to low-frequency gain changes.

It can be seen in the calculation of Top that a sizable differ-
ence in noise power would help reduce sensitivity to errors in

power measurement. While this can easily be accomplished

through the use of large (50 K) noise diodes during antenna
calibration, operating the NAR during a Voyager array pass

would require the use of small diodes in order to prevent sig-

nificant telemetry degradation.

An additional problem in present DSN NARs involves non-

linearities in measurements performed by the PPM. The prob-

lem lies with the PPM square-law diode detectors not being

square-law. The Parkes NAR will attempt to improve noise

measurement accuracy by replacing the nonlinear square-law
diodes with the new linear DPM.

A third consideration in calculating antenna system noise

temperature is resolution. The degree to which any NAR can

resolve noise temperature is expressed by the following equa-

tion [2]:
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(ATtain) NAR - op
(tB) 1/2 -_dJ

where

B = detector bandwidth, Hz

t = total integration time, s

In the case of the Parkes NAR, a best-case system temperature

of 21.5 K (maser 1, antenna at zenith), the 50-K noise diode

for antenna pointing, the DPM bandwidth of 10 MHz, and a

requirement on ATmi n of 0.01 K allow solution of a minimum

integration time, tmi n :

-- op

tmin B(A Tmin)2 + Td j

- [,t 4(21.5) 2 + = 2.64 s
min 107(0.01)2 "5--6"J

Total measurement time includes switching "dead time" in

addition to total integration time. Similar calculations using a

worst-case Top of 26 K (maser 2, antenna at 25 degree eleva-
tion) yield a total integration time of 4.11 seconds. Since the

DPM computes a Top value in about 100 ms, a large number of
samples would need to be averaged together by the FEC CPU

to meet the total integration time. (Figure 4 illustrates the

relationship between temperature resolution and integration

time for a variety of diode temperatures using a typical case of

Top = 24 K.)

In addition to averaging Top samples to meet resolution
requirements, the FEC will also have the ability to automati-

cally adjust integration time to continually compensate for

variations in the computed Top, thereby keeping noise tem-
perature measurement resolution within specification at all
times.

V. Conclusion

Although not yet out of the proof-of-concept phase the

design of the Parkes noise-adding radiometer has generated

enough support for inclusion in the Parkes Front-End Reim-

plementation Task. A thorough RF analysis has been com-
pleted, and plans call for testing a breadboard of the DPM in

early 1988. Full-scale system testing with the front-end elec-

tronics is scheduled for mid-1988, with delivery of the com-

pleted system late in the year.

Acknowledgments

The author would like to thank C. T. Stelzried for providing suggestions on NAR

operation and H. R. Buchanan for his help in RF analysis.

References

[1] C. T. Stelzried, "Non-Linearity in Measurement Systems: Evaluation Method and

Application to Microwave Radiometers," TDA Progress Report 42-91, vol. July-

September 1987, Jet Propulsion Laboratory, Pasadena, California, pp. 57-66,
November 15, 1987.

[2] P. D. Batelaan et al., A Noise-Adding Radiometer for Use in the DSN, JPL Space

Programs Summary 37-65, vol. 2, Jet Propulsion Laboratory, Pasadena, California,

pp. 66-69, September 30, 1970.

120



RS-232 _-

ANALOG Top _._

MICROWAVE/RF

-- NAR CONTROL

SWITCH/

CONTROL
UNIT

'IEEE-488

FEC

86/14
CPU

DUAL DSN
NOISE DIODE
ASSEMBLIES

S N ,'O  LAT,ON

AL ._

D'G'TALI I

PARKES FRONT-END CONTROLLER

DUAL

-- X-BAND TWM/

DOWNCONVERTER

I DUAL 3-dB }_.._

PARKES RECEIVER
SIGNAL SELECT
ASSEMBLY

Fig. 1. Parkes noise-adding radiometer block diagram

RECEIVER
RF

I 330-MHz
LOCAL
OSCI LLATOR

RF2

RF
SWITCH

ATTENUATOR] -I AMPLIFIER

MIXER

10-MHz
LOW-PASS
FILTER H AMPLIFIER _'_ 8 bit A/D

CONVERTER

34 bit

MULTIPLIER/
ACCUMULATOR

Fig. 2. Digital power meter block diagram

121





TDA Progress Report 42-92

N88-18789 !

October-December 1987

X-Band System Performance of the Very Large Array
J. S. Ulvestad

Tracking Systems and Applications Section

G. M. Resch

TDA Technology Development Office

W. D. Brundage

National Radio Astronomy Observatory
Socorro, New Mexico

The Very Large Array (VLA) is being equipped to receive telemetry from Voyager2

during the Neptune encounter in 1989. Cryogenically cooled amplifiers are being installed

on each of the 27antennas. These amplifiers are currently a mix of fieM effect transistors

(FETs) and high electron mobility transistors (HEMTs) and exhibit zenith system tem-

peratures that range from 30 K to 52 K. We summarize the system temperatures and

aperture efficiencies determined during the past year. The nominal values of the noise

diode calibration are compared with derived values made under the assumption of a

uniform atmosphere over the array. Gain values are determined from observations of

unresolved radio sources whose flux densities are well known. The tests suggest that the

completed VLA will have a ratio of gain to system temperature that is approximately

4.4 dB above that of a single 64-m antenna of the Deep Space Network.

I. Introduction

The Very Large Array (VLA) [1] in New Mexico will be

arrayed with two or three Goldstone antennas during the

Voyager encounter with Neptune and will support 21.6

kilobit/s telemetry from the spacecraft [2]. Initial plans called

for equipping the VLA with cryogenically cooled FET ampli-

fiers with an expected system temperature performance of

45-50 K at the Voyager downlink frequency of 8.42 GHz.

During the planning phase of this implementation, the Deep

Space Network (DSN) Advanced Systems Program and the

National Radio Astronomy Observatory (NRAO)jointly

began an effort with the General Electric Corporation and

with Cornell University to examine the potential of a new type

of transistor-a high electron mobility transistor (HEMT) [3]

that might replace the FET and give better performance. This

effort has been successful with the result that HEMTs are

replacing the FETs and yielding roughly 15 K lower system

temperatures at the zenith. The existing FET amplifiers will

be replaced with HEMTs before the Neptune encounter.

The first 8.4 GHz amplifier (a FET) was installed in Novem-

ber 1984. There were two antennas with X-band capability

until May 1986. Since then, X-band systems have been installed

at the approximate rate of one every seven weeks. Through

February 1987, there were seven antennas equipped with

X-band capability, three with FET amplifiers and four with
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HEMT amplifiers. As with the other VLA frequencies, each

system consists of two intermediate frequency pairs. The right

and left circularly polarized channels of one pair are desig-

nated "A" and "C," while those of the other pair are "B" and

"D." Time on the array is allocated monthly in order to test

system performance and operation with DSN telemetry
receivers.

One of the tests that is often performed is a tip curve of

all available X-band antennas in order to estimate the system

temperatures including the atmospheric contribution. This

is done for each antenna independently. Taken at face value,

the tip curve data suggest unreasonably large variations of

atmospheric temperature across the array, which implies
inordinately large fluctuations of water vapor. We suspect

that this result is due to two circumstances: (1) the in situ
value of the calibration diode differs from its value deter-

mined in the laboratory; and (2) the actual value of the

calibration diode varies slightly as a function of tempera-

ture and power supply current. We examine the nominal

calibration of noise diodes on each antenna by assuming

uniformity of the atmosphere and then derive a new value
for the noise diode calibration level.

At various times, well-known radio sources are observed

in order to estimate the antenna aperture efficiencies (i.e.,

the gain of the individual antennas). The ratio of the antenna

gain to the system temperature, G/T, is an important param-

eter in the communications link performance and is derived

for each antenna in operation by March 1987. In this article
we summarize the results of the analysis of both the system

temperature and aperture efficiency data from the past year.

II. System Temperature Data

The X-band configuration of the VLA antennas consists of

dual amplifiers (one for each polarization) with a noise diode

coupled to the input of each amplifier. The noise diodes can

be switched on and off by one of the control computers and

the output synchronously demodulated. Thus, the system is

capable of being operated as a noise adding radiometer (NAR).

The block diagram of the VLA electronics is shown in [1],

and a description of the radiometric capability is given in [4].

The equivalent temperature of the noise diode is adjusted to

be approximately 10 to 20 percent of the system temperature

at the time each amplifier package is assembled and tested,

but prior to installation on the antenna. This equivalent

temperature of the noise diode is referred to as the "nominal

value" and will vary slightly among the different amplifiers.

At X-band frequencies, the atmosphere radiates at an

apparent temperature of several degrees; it can be used to

calibrate the noise diode equivalent temperature much like a

cold load. The technique that is used is called a "tip curve"

and has both advantages and disadvantages as compared with

the laboratory determination. The primary advantage is that

the tip curve is done in situ on the antenna. The disadvantages

are the following: (1) an independent measurement of atmo-
spheric water vapor is needed; (2) it is necessary to calculate

the emission of both water vapor and oxygen with high accu-

racy (if an absolute calibration is desired); (3) the atmosphere

must be assumed to be plane-layered; and (4) the system

temperature is dominated by radiation in the main beam
of the antenna. These factors will be discussed as the analysis

proceeds.

VLA operations provide the capability of running a proce-

dure called TIPPER that drives all antennas in a sub-array to

elevation angles of 60, 40, 30, 25, 20, 15, and I0 degrees.
NAR data is taken at each of these elevation angles as the

antennas tip toward the horizon at an azimuth of roughly

90 degrees, and then again at each of these elevations as the

antennas return to zenith. The procedure takes approximately

15 minutes and provides 13 estimates (the 10 degree point is
not repeated) of the system temperature (i.e., the brightness

temperature of" the sky). The tip curve data that we will con-
sider in this article are summarized in Table 1.

A gating circuit is used to measure the "gated total power"

level when the noise diode is off, Vgtp. This includes all contri-
butions to the system temperature except for the automati-

cally switching noise diode. This gated total power level is
kept very near 3 volts by an automatic level control. The

quantity V_a is the voltage from the "synchronous detector,"
and is the observable during a tip curve. It represents the extra

voltage from a square-law detector that is synchronized with
the noise diode switch rate of 9.6 Hz. That is, this voltage

shows the level of contribution of the noise diode in propor-

tion to the nominal system temperature. The synchronous

detector has a gain of 15 relative to the gated total power

detector. Hence, if the noise diode contributes 10 percent of

the system temperature, the ratio Vsa / Vgtp is 15 × 0.1 = 1.5.
To compensate for this additional gain, the voltage at the

gated total power detector is multiplied by 15 in the equation

for the system temperature. Therefore, we have the following

relation for the system temperature observed when the noise
diode is off:

T co__ (la)
sys _sd

A lower value of lisa means that the noise diode contributes a

smaller fraction of the system temperature, and hence that the

overall system temperature is higher. Therefore, as an antenna
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points to a lower elevation, the system temperature increases

and _a decreases.

The nominal noise temperature contributed by the noise

diode is Tcal, which is used to scale the voltage ratio in order
to give the actual system temperature value. Hence,

Tys _ 15Tal VW (lb)

The real expression for the system temperature at a VLA

antenna is slightly more complex, because it also includes

measured DC offsets of the two voltage detectors, Fgrpo and

Fsao. Thus, the final estimate of system temperature is given
by the expression [5]

(lc)

Typically, Vgtp and the zero-level offsets, Vgtpo and Vsdo,
change slowly and by very small fractional amounts. Opera-

tional procedure at the VLA is to measure these three values

for each antenna intermediate frequency (IF) channel at

roughly two-week intervals. Once determined, they are assumed

constant and used in Eq. (lc) to calculate the system tempera-

ture. We will examine this assumption later, since changes in
these values on time scales shorter than two weeks can lead to

small errors in the system temperature or to apparent changes

in the value of TcaI.

In the radiometry mode used for tip curves, an IF band-

width of 50 MHz is used along with a minimum integration

time of 1 s. Together with a TcaI value that is _15 percent of

Tsys, this gives an rms fluctuation level of approximately 10 -3

× Tsys. That is comparable to the quantization level of the
analog-to-digital converter, so that fluctuations occur in the
least significant bit.

The system temperature looking at cold sky is

Tsys = Tec + Tce-r + Ltm (2)

Here, Trec is the receiver temperature (in kelvins) referenced

to the antenna aperture, T_ is the cosmic blackbody background

temperature (2.8 K), Tat m is the temperature contribution by
the atmosphere, and r is the optical depth of the atmosphere

in nepers. The atmospheric temperature is given by

Tatm = T (1 -e -r) (3)

where Tm is the mean radiating temperature of the atmosphere,
in kelvins.

Note that the conventional definition of Trec is referenced
to the input of the first amplifier stage, whereas the definition

made above includes losses and scattering in the antenna struc-

ture. If the atmosphere is plane layered then we can write,

r = ro × AM (4)

where ro is the optical depth at the zenith (in nepers) and AM
is the air mass (AM _ csc [elevation angle]). Given a set of

data at elevation angles El, E 2 ..... fiN, the combination of
Eqs. (1) and (2) gives a series of N equations that can be solved

for some combination of the parameters Tcal, Trec, and ro .

In the first part of the analysis we will assume that the

values for T_ are accurate for each system and use the tip

curve data to solve for ro. Figure 1 shows the data from a
typical tip curve with the system temperatures as calculated

from Eq. (1) plotted versus the air mass. At the 8.4 GHz fre-

quency the atmospheric opacity is typically small (i.e., r << 1),

so the tip curve is linear with air mass. Note that the data

are linear except for the point at 10 degree elevation (5.75 air
masses).

The geometry of the feed and subreflector suggests that

there is forward spillover that may be intercepting the land
mask, which is typically greater than 0 degrees. At 10 degrees,

this spillover picks up radiation from the earth at ~270 K and

can contaminate the tip curve data even though the gain is

reduced by 20 dB or more. For this reason we do not use any

of the data from 10 degree elevation in the analysis. Figure 2

shows the residuals after we solved for the zenith opacity ro.
We plot the observed system temperature minus that calcu-
lated from the fit, versus the air mass. The data at 10 degrees

were not used in the fit, but are shown in the plot to empha-

size that they are anomalous on almost all of the antennas and

are very repeatable on a given antenna. When all of the tip

curve residuals are averaged (except the 10 degree points),
the rms at each elevation is on the order of 0.1 K.

After we have solved for the zenith opacity we can calcu-

late the temperature contribution of the atmosphere from

Eq. (3) if we know the mean radiating temperature of the

atmosphere, Tm. Using a nominal value Tm =257 K, we
analyzed the tip curve data listed in Table 1. Note that we

could have included Tm as a solved-for parameter. However,

as shown in the appendix, Tat m is relatively insensitive to this
quantity. Figure 3(a-j) shows the solved-for atmospheric tem-

perature versus the antenna number where the "AB" and

"CD" notation is the convention at the VLA to designate the

two circular polarizations, right and left, respectively. Note
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that antenna 10 came on line in February 1987 and is missing

from the earlier tip curve data, and antenna 24 is missing from
the 24 and 25 November data due to equipment problems.

Consider two aspects of these plots: first, the variation in

the average level from one figure to the next; and second, the

shape of each plot. Also note that although the average atmo-
spheric temperature varies from day to day as we might expect,

the general shape of the curve is remarkably consistent from
month to month. The antenna-to-antenna variation is larger

than we would expect from atmospheric fluctuations over the

baselines in the array. The common element in this part of

the analysis is the fact that we used the nominal values for

Tca1. In the case of a perfectly stable, calibrated system and a
stratified atmosphere, we would expect that the plots in

Fig. 3 would be nearly flat; i.e., all antennas would report

nearly the same value for Tatm . In reality, some variation

would be expected due to (1) real variations in atmospheric

water vapor or liquid (e.g., clouds or rain cells); (2) system
noise; (3) changes in the offset calibration values; or (4)

changes in the value of the noise diode calibration TeaI.

We might expect the average value of Tat m to vary from

day to day due to slow changes in the atmosphere, changes

dominated primarily by the water vapor content and liquid
water in clouds. It is a relatively straightforward matter to

solve the equation of radiative transfer and compute the

apparent brightness temperature of the atmosphere at the
frequency 8.4 GHz, given the amount and distribution of

water vapor and oxygen. It is found that it takes 0.42 cm of

precipitable water vapor to cause a 0.1 K change in Tatm at
this frequency. This amount of water vapor is equivalent to

a difference in propagation delay of 2.6 cm at the zenith

over distances of a few kilometers. For a typical wind speed

of 8 m/s, this would imply phase changes of three-fourths
of a turn on time scales less than 500 sec. It is highly unlikely

that the vapor over the array will differ by this amount, so
we conclude that the assumption of constant atmosphere

over the array is a good one.

As mentioned above, small changes in the offset data can

cause systematic errors in the estimated brightness tempera-

tures, or in our case changes in the derived values of Tat m .

In order to estimate the size of these effects we used the tip

curve data from the first tip curve on 26 October 1986 and

reduced it using the offset data from 24 October 1986, 24
November 1986, 16 December 1986, 14 January 1987, and

19 February 1987. Table 2 summarizes the average as well

as maximum positive and negative deviations from the first
set of offset data. We see that although the average changes

are quite small, there are "jumps" in the offset data that can

cause relatively large changes in the solved-for parameters.

The offset data for antennas 1lAB and llCD are listed in

Table 3. The change in Vsao between 24 October and 24
November 1986 gives rise to changes of -0.131 K, -0.45 K,

and -0.00052 neper in Zatm, Trec, and to, respectively. Simi-

larly, the change in Vgtp between 14 January and 19 February
1987 causes changes of 0.144 K, 1.43 K, and 0.00057 neper in

Zatm, Zrec, and r0. We conclude that, although the average
values of these quantities are quite stable, variations on time

scales of approximately two weeks or less in the offset data
can lead to variations of -+0.15 K in the atmospheric tempera-

perature Tatm, -+1.4 K in the receiver temperature Trec, and
-+0.0006 in the zenith opacity ro for a particular observation.

If higher accuracy is required, calibration data should be

sampled both before and after an observation. It seems un-

likely that the offset data variations could give the repeatable

signature shown in Fig. 3 over a six-month period.

The system noise can be estimated from the repeatability

of the two tip curves taken on 26 October, about 1 hour

apart, and comparing the solved-for parameters from each
antenna channel. The average changes as well as maximum

increases and decreases from the first to the second tip curve
are listed in Table 4. We note that the absolute surface humid-

ity values, as indicated by the temperature and dew point

measurements, were 3.6 and 3.5 gm/m 3, respectively, for the

start of the two tip curves, suggesting a stable atmosphere

during the observations. We conclude that system noise can
account for some of the small differences in Fig. 3(a-j) but

cannot account for the large differences between antennas

or for the repeatability of the signature.

If variations in the atmosphere. DC offset data, and system

noise cannot account for the differences seen in Fig. 3(a-j), we

are left with the possibility of variations in the calibration of

the noise diode. The precise value of Tca I is determined in the

laboratory for each individual amplifier by comparison with a

cold load, using the technique described in [6]. The labora-

tory calibration of the diode equivalent temperature involves
some intrinsic measurement uncertainty. This calibration may

be different from the actual value on the antenna due to the

slightly different impedances of the cold toad and the antenna

as seen by the amplifier. If we use the laboratory determina-

tion of Tcal, this would lead to a bias in the determination of
system temperature. In addition, the noise diode is sensitive

to the physical temperature of its surroundings (typically

0.01 dB per kelvin) and to small changes in the current

through the device. Since the front-end area on the antenna

is reasonably stable (-+2 K), we might expect Tea1 to change

slowly around some nominal value due to temperature cycling.

The temperature cycling is impossible to solve for without

knowing the physical temperature variations in the front-end

area. However, a potential bias in TeaI for each antenna can
be extracted, at least in a relative sense.
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In the second part of the analysis we adopt as the reference

antenna 1 lAB. In this analysis, we force all antennas to "see"

the same opacity as 11AB and solve for the value of Tea1 for

each tip curve. The 10 values for Teal are then averaged to

estimate the possible bias relative to antenna 11AB. Table 5
summarizes the nominal values of the noise diode calibration

from the laboratory determination versus the solved-for values

determined by the above procedure.

If we now use these new values of TeaI to reanalyze the tip

curves, the variations in Tatm are much less pronounced. The
dotted curves in Fig. 3(a-j) show the solved-for atmospheric

temperature using these corrected Teal values, and Table 6
summarizes the rms values obtained from using the nominal

values of Teat versus the solved-for values of Teal. We see that

the rms of Tatm is reduced by approximately a factor of two
in this procedure and conclude that these new values of T_

are more internally consistent than the nominal values. We

have probably removed most of the bias term in Teal that is

due to differences in the laboratory value versus its in situ

value. We have not reduced variations in Teal around its average
value, nor have we addressed its absolute value. Table 7 lists

the zenith values for Tsys and Tree derived using the new
values of Tea1. Also, note that although the variation in Tat m

from antenna to antenna is reduced, the rms is still more than

we might reasonably expect from fluctuations in water vapor

over the array.

III. Aperture Efficiency Measurements

No antenna does a perfect job of detecting the radiation

that impinges on its primary surface. Some of the effects
that reduce the efficiency of an antenna are diffraction effects,

physical blockage by support structures, irregularities in the
main and the subreflector shape, imperfect illumination,

mechanical alignment of the feed and subreflector, subreflec-
tor focus, and pointing. The aperture efficiency is a measure-

ment of the fraction of the radiation hitting the main reflect-

ing surface that is actually detected; it is the ratio of the

"effective" area of an antenna to its actual physical area. For

monolithic radio telescopes operating at their primary observ-

ing frequencies, aperture efficiencies are typically 50-70 per-
cent. The efficiency also tends to be reduced when observa-

tions are made at low elevation angles because of increased

deformation of the telescope surfaces.

The VLA antennas were designed to work well at fre-

quencies up to 22 GHz. Therefore, good aperture efficiencies

should be expected at 8.4 GHz if the new X-band systems are

designed and installed properly. Measurements of the aperture

efficiencies of the antennas with X-band systems thus serve to

verify the overall design and ensure that the hardware is

installed properly on the telescopes.

Aperture efficiencies are typically found by measuring the

antenna temperatures given by observations of radio sources
with known flux densities. The effective area of a telescope is

given by the formula A e = 2kTant/S, where k is Boltzmann's

constant, Tan t is the antenna temperature contributed by the
radio source, and S is the radio source flux density. Since the

effective area is simply the aperture efficiency e multiplied by

the physical area Ap, the efficiency is then given by the
equation,

2kTan t
e - (s)

SAp

Frequently, this expression is rearranged to give an expression

for the overall sensitivity of a telescope,

Tant CAp A e

S 2k 2k (6)

In normal radio astronomy usage, this sensitivity is expressed

in kelvins per jansky, where the jansky is the unit of radio

flux density and is defined to be equal to 10 -26 W/m2/Hz.

The antenna temperature is simply the difference between

the system temperature measurements on and off source. The

system temperature of a VLA antenna is measured using the

NAR and calculated using the expression for Tsys given in the
previous section. Therefore, the final expression for the
aperture efficiency (dimensionless) of a VLA antenna becomes:

30kTal( wrp- gtP0) [" 1

SAP L(_d - _d o) on

(7)

The VLA has a standard observing mode which can be used

to measure aperture efficiencies. This mode is somewhat more

elaborate than just making simple measurements on and off

source. Instead, the antennas point at a specified source posi-

tion and at four points separated from that position by a dis-
tance equal to the nominal half-power half-width of the beam.

Two points are offset by plus or minus half a beamwidth in

elevation, while the other two are offset by plus or minus

half a beamwidth in azimuth. Interleaved among the "on-

source" and "half-power-point" measurements are observa-
tions that are made 5 beamwidths off source in azimuth.

At the 8.4 GHz operating frequency the antenna has a half-

power beamwidth of 90 millidegrees and the peak pointing

residuals are typically 2 to 3 millidegrees, so the effective

pointing loss is less than 1 percent. However, there is a known

beam squint between the two polarizations that causes point-
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ing offsets of 5 millidegrees in azimuth and 1.5 miUidegrees in

elevation at 8.4 GHz. We have chosen to optimize the pointing

for both polarizations simultaneously so as to use a single set

of pointing offsets. This results in measured antenna effi-

ciencies that are systematically 1-2 percent lower than theo-

retically possible.

The procedure for determining the aperture efficiency via

measurements of a given source is straightforward. The fringe

amplitude on a strong point source is measured relative to the

standard flux density calibrator 3C286, whose flux density is

assumed to be 5.20 Jy at X band. This gives the value for S

to be used in the efficiency formula. The observing mode

described above is used to measure the synchronous detector

voltage both on and off source. If necessary, the measurements

made at the half-power points are used to correct the on-source

measurements for possible pointing errors. Such corrections

are not made if the pointing has been checked prior to the

observing session and found to be adequate. Then, the mea-

sured numbers are used to calculate the efficiency for each

polarization of each available antenna. When time permits,
measurements on several different sources are made consecu-

tively.

Aperture efficiency measurements have been made periodi-
cally since the beginning of 1986. Since only two X-band

antennas were available until about mid-1986, the histories
on other antennas cover no more than nine months. Table 8

summarizes the results for each antenna measured to date,

using the solved-for values of TcaI. Elevation-angle dependence
is ignored in this table. Right and left circularly polarized data

are distinguished, and the rms error is also given. Quoted

errors are statistical only, and do not take possible systematic

effects into account. One IF pair for antenna 11 (the "BD"

pair) is not included, because it consistently gives abnormally

high efficiency values, presumably due to some instrumental

problem that has not yet been tracked down. Values for

antenna 10 should be considered preliminary, since it was

recently brought on line and was measured only via observa-

tions of three different radio sources in February 1987. Note

that the efficiency for antenna 20 is considerably lower than
that for the other antennas. Antenna 20 was the first VLA

antenna to be equipped at X band; it uses a nonstandard feed

and receiver rather than the production models that were

installed on the other antennas. The preliminary feed design

is thought to account for the low efficiency and will be

swapped for a production model prior to the encounter.

Summaries for various combinations of data are given at

the bottom of Table 8. For reasons stated above, no data from

antenna 20 are included in the summaries. The agreement

among the other antennas is fairly good, although there are

some discrepancies such as the apparently low efficiency

for the left circularly polarized feed of antenna 24.

The three radio sources used most often for aperture

efficiency measurements were 3C273, 3C279, and 3C345. In

general, 3C273 gave higher aperture efficiencies than the other

two sources. This may be caused by the fact that 3C273 is

about three times stronger at X band than are the other two

sources. It contributes slightly more than 3 K, or about 10

percent for a HEMT-equipped antenna, to the total system

temperature. The other two sources contribute only about

3 percent to the system temperature. Detector nonlinearities

or differing signal-to-noise ratios may account for the apparent

difference in aperture efficiency. No other sources have been

measured often enough to confirm that the possible effect is

actually dependent on source strength. Since 3C273 and

3C279 are much further south than 3C345, they were typi-
cally measured at lower elevations. The data listed in Table 8

were taken at elevation angles between 30 and 45 degrees

and are not sufficient to determine potential elevation angle
dependence.

Including the possible systematic errors caused by noise

diode variations and by measurements of different sources,

the best estimate for the aperture efficiencies of the VLA

X-band systems is 0.62 + 0.03 at elevations of _40 degrees.

The antenna sensitivities are then computed to be 0.110-+

0.005 K/Jy.

IV. Ratios of Gain to System Temperature

The overall figure of merit of an antenna is determined by

a combination of its noise level and its gain. For a VLA

antenna at X band, the ratio of gain to system temperature
(hereafter G/T) is given by

G/T = 4.859 × 106 e (8)
T_ys

The numerical factor in this equation is derived from the

definition of the gain, G = 4nAe/h 2 (e.g., [7]). The symbol
represents the observing wavelength.

Note that the value of G/T depends only on the aperture

efficiency and system temperature of an antenna of a given

physical size. The preceding sections have described the sepa-

rate calculations of the aperture efficiencies and system tem-
peratures. One of the major uncertainties in the determina-

tion of each quantity individually is the possible error or

variation in the effective temperature of the noise diode, TeaI.
However, as shown by Eqs. (1) and (7), both aperture effi-

ciency and system temperature values are directly propor-
tional to the assumed temperature of the noise diode. There-
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fore, in the evaluation of Eq. (8), the assumed value of Tea l

divides out and is removed as a source of error in the deter-

mination of antenna figure of merit.

The values of G/T for all of the VLA antennas equipped

at X band are shown in Table 9. For four HEMT-equipped

antennas (numbers 3, 10, 11, and 24), the weighted mean

value of G/T is found to be 9.40 × 104 K -1 at the zenith,
with an rms of 6.0 × 103 K -1 . The value of G/Tat 30 degree

elevation is also of importance; since the Voyager spacecraft

is at a southerly declination, its maximum elevation at the

VLA during the Neptune encounter phase will be ~34 degrees.

Assuming an atmospheric temperature of 2.7 K per air mass,
we find G/T = 8.65 × 104 K -1 at 30 degree elevation. By

comparison, we note that the most sensitive VLA frequency

prior to the X-band installation was 5.0 GHz (C band). At

that band, the VLA antennas have typical system tempera-

tures of 50 K and aperture efficiencies of 0.65 at zenith.

Using these values and the wavelength of X band, we calcu-

late G/T = 6.32 X 104 K -1 at zenith. Thus, the VLA antennas

have a typical G/T at X band that is about 50 percent higher

than would be expected if their overall performance were the
same as at C band. This is consistent with the fact that the

antennas that were initially equipped with FETs at X band

give measured values of G/Tthat are near 6 × 104 K -1 .

At 30 degree elevation, the sum of 27 VLA antennas

(assuming all HEMT amplifiers) with zero relative phase

would give a net G/T of 2.34 × 10 6 K -1, or 63.7 dB/K.

Including a 1.0 dB loss because of the 3-level quantization and

the periodic data gap at the VLA, the final estimate of G/T is
then 62.7 dB/K. By comparison, a 64-m antenna of the Deep

Space Network (DSN), assumed here to have a 50 percent

aperture efficiency and a system temperature of 25 K at 30
degree elevation, would have G/T = 58.0 dB/K. Therefore,

the performance of the individual antennas at the VLA pre-
dicts that the array of 27 antennas will give an overall enhance-

ment of 4.7 dB, or a factor of 2.9, over the G/T of a single
64-m DSN antenna. There will likely be a modest signal loss

of 0.2 to 0.3 dB because the 27 VLA antennas will have non-

zero relative phases caused by system noise and by imper-

fectly corrected tropospheric disturbances. Thus the net

improvement afforded by the VLA will be about 4.4 dB

relative to a single 64-m antenna, making the VLA "worth"

approximately 2.75 64-m antennas.

V. Summary

The system temperatures, aperture efficiencies, and gain

to system temperature ratio for the 7 VLA antennas that

were equipped with X-band amplifiers as of March 1987
have been measured. An internally consistent set of system

temperature calibrations was derived referenced to antenna 11

and listed in Table 7. Aperture efficiencies, as summarized in

Table 8, were derived by observing several strong radio sources
whose flux densities were measured relative to the calibration

source 3C286. The G/T ratio for the HEMT-equipped antennas
was found to be 9.40 X 104 K -I at the zenith. The fully

phased VLA is predicted to have a G/T value that is 4.4 dB

above that of a single 64-m DSN antenna.
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Table 1. Summary of tip curve observations*

Date Time Temperature Dew point Remarks

26 Oct. 1986 1000 9.0 -3.9 Clear and dry

26 Oct. 1986 1050 11.9 --4.6 Clear anddry

27 Oct. 1986 1340 16.3 -5.5 Clear and dry

24 Nov. 1986 1110 2.7 -9.2 Clear

25 Nov. 1986 1350 9.8 -4.1 Clear

16 Dec. 1986 1030 3.2 .1.7 Heavy overcast, drizzle

13 Jan. 1987 0800 -9.0 -10.9 Clear

19 Feb. 1987 1200 -3.9 -7.3 Cloudy, fog, snow on dishes

27 Feb. 1987 0140 -4.4 -7.5 Clear and calm

1 Mar. 1987 0140 -8.0 -9.4 Clear and calm

*Time is the start in mountain standard time zone; surface temperature and dew point near the array

center are given in degrees Celsius.

Table 2. Changes In solved-for parameters due to changes in the
offset data

Average Maximum Maximum
Parameter

change increase decrease

Tat m (K) 0.0007 0.144 -0.131

Tre c (K) 0.09 1.43 -0.45

Opacity (nepers) <10 -s 0.00057 -0.00052

Table 3. Summary of offset data (In volts) for antennas 1lAB and 11CO

1lAB IICD

Date Vgtp 0 Vgtp VSd 0 Date Vgrp 0 Vgtp Vsd 0

24 Oct. 1986 -0.08 3.01 -0.094 24 Oct. 1986 -0.03 3.02 0.005

13 Nov. 1986 -0.08 3.00 0.041 13 Nov. 1986 -0.03 3.02 0.004

10 Dec. 1986 -0.04 2.99 0.074 I0 Dec. 1986 -0.03 3.02 0.005

14 Jan. 1987 -0.03 3.02 -0.015 14 Jan. 1987 -0.04 3.06 -0.004

19 Feb. 1987 -0.03 3.02 0.018 19 Feb. 1987 -0.04 2.85 0.008
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Table 4. Changes of solved-for parameters from successive tip
curves obtained on 26 October 1986

Parameter Average Maximum Maximum
change increase decrease

Tsy s (K) -0.13 0.06 -0.27

Tat m (K) -0.0084 0.062 -0.082

Tre c (K) -0.12 0.14 -0.33

r 0 (neper) 0.00003 0.00025 -0.0003

Table 5. Nominal and solved-for values of the noise diode

value Tca I (in kelvins)*

Tcal
Antenna rms Ratiot

Nominal Solved-for

3AB 4.20 4.71 0.24 0.892

3CD 4.33 4.70 0.26 0.922

10AB 4.33 4.68 0.08 0.925

10CD 4.50 4.59 0.10 0.980

llAB 4.03 4.03 0.001 0.9999

11CD 3.94 3.92 0.17 1.004

20AB 5.00 4.91 0.21 1.019

20CD 4.20 4.69 0.22 0.896

2lAB 3.70 3.70 0.16 1.001

21CD 4.00 3.85 0.14 1.039

24AB 4.32 4.48 0.17 0.965

24CD 4.21 4.02 0.14 1.047

25AB 4.07 4.22 0.25 0.965

25CD 3.99 4.17 0.28 0.957

*Antenna 1lAB was used as the reference for the opacity, and Tea I was

computed on all other channels to give the same opacity for each tip
curve.

tRatios are those of the nominal values to the solved-for values of the

noise diode temperatures.

Table 6. Comparison of the atmospheric temperature (in keivins)
derived from tip curve data, using two different values of Tca I for
each antenna IF"

Date

Before After
correction correction

Tat m rms Tat m rms

Oct. 26 (a) 2.66 0.13 2.73 0.05

Oct. 26 (b) 2.67 0.11 2.74 0.05

Oct. 27 2.70 0.12 2.77 0.06

Nov. 24 2.58 0.22 2.64 0.13

Nov. 25 2.57 0.22 2.65 0.14

Dec. 16 2.81 0.24 2.90 0.16

Jan. 13 2.59 0.13 2.67 0.04

Feb. 19 2.89 0.16 2.97 0.14

Feb. 27 2.62 0.13 2.70 0.06

Mar. 1 2.57 0.13 2.64 0.05

*Nominal values of Tca I were used first and then corrected by taking
antenna 1 lAB as a reference.

Table 7. Average zenith system temperature and receiver
temperature (K) for each antenna, as found using the solved-for

values of Tca I

Antenna Tsy s rms Tre e rms

3AB 33.1 1.4 27.6 1.4

3CD 34.8 1.2 29.3 1.3

10AB 37.5 1.4 32.0 1.3

10CD 34.8 1.2 29.2 1.1

llAB 31.1 0.5 25.6 0.4

11CD 29.9 0.8 24.4 0.7

20AB 44.7 0.5 39.2 0.5

20CD 49.5 0.5 44.0 0.4

2lAB 46.5 0.6 41.0 0.6

21CD 47.8 0.8 42.3 0.7

24AB 27.5 1.0 22.0 1.0

24CD 29.4 1.0 23.9 1.0

25AB 51.7 1.2 46.1 1.2

25CD 51.7 1.2 46.2 1.2
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Table8.ApertureefficiencymeasurementsofVLAantennas

Antenna Receiver

RCP LCP Total

• rms e rms e rms

3 HEMT

10 HEMT

11AC HEMT

20 FET

21 FET

24 HEMT

25 FET

Weighted mean (no 20)

Weighted mean (HEMT)

Weighted mean (3C273)

Weighted mean (3C345)

Weighted mean (3C279)

0.659 0.061 0.661 0.046 0.660 0.052

0.636 0.031 0.631 0.033 0.634 0.032

0.621 0.029 0.606 0.031 0.614 0.030

0.545 0.047 0.570 0.036 0.561 0.040

0.603 0.048 0.599 0.044 0.601 0.046

0.614 0.028 0.567 0.042 0.600 0.033

0.614 0.061 0.619 0.053 0.617 0.057

0.623 0.037 0.613 0.039 0.618 0.038

0.625 0.033 0.615 0.037 0.621 0.035

0.651 0.041 0.637 0.033 0.643 0.036

0.607 0.036 0.591 0.042 0.600 0.039

0.62/3 0.045 0.617 0.049 0.619 0.047

Average source fluxes:

S(3C273) = 31 Jy

S(3C345) = 11 Jy
S(3C279) = 10 Jy

Table 9. List of G/T values (units of 104/K)

Antenna Receiver
RCP LCP Total

G/T rms G/T rms G/T rms

3 HEMT

10 HEMT

11AC HEMT

20 FET

21 FET

24 HEMT

25 FET

Weighted mean (HEMT)

Weighted mean (FET, no 20)

9.67 0.98 9.23 0.72 9.38 0.82

8.24 0.51 8.81 0.55 8.50 0.53

9.70 0.48 9.85 0.57 9.76 0.52

5.92 0.51 5.60 0.36 5.71 0.42

6.30 0.51 6.09 0.46 6.18 0.48

10.85 0.63 9.37 0.76 10.25 0.69

5.77 0.59 5.82 0.52 5.80 0.55

9.47 0.58 9.31 0.63 9.40 0.60

6.07 0.55 5.97 0.49 6.01 0.52
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Fig. 1. Data plotted from antenna 3, channel AB, showing the total

system temperature versus the air mass, illustrating a typical tip

curve. Note that the datum at 10 degree elevation (AM = 5.8) is

plotted but not used in the fitting procedure.
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Fig. 2. Plot of the residuals from Fig. 1. Neglecting the point at

AM = 5.8, the residuals are typically less than 0.2 K.
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Appendix

Calculation of Tm

An accurate calculation of Tm , the mean radiating tempera-
ture of the atmosphere, depends not only on the vertical tem-

perature distribution of the atmosphere at a given time but

also on the fact that the two primary molecular contributors

(water vapor and oxygen) have different vertical density distri-

butions. Some of the variations observed in T,n from sites
within the continental United States are discussed in [8]. For

the present purpose we have made use of one year (1976) of

radiosonde data from E1 Paso, Texas, in order to estimate Tm
from surface temperature data. E1 Paso is approximately

280 km from the VLA and is in approximately the same

climatic zone, although E1 Paso is at an altitude of 1200 m

versus 2124 m for the VLA site. Using the E1 Paso data and

assuming a linear relation between Tm and the surface tem-

perature Ts gives

T = 256.9 +0.445T (A-l)
m 3

where Ts is in degrees Celsius. Note that the sensitivity of Tat m

with respect to changes in Tm for ro << 1 is

dTtm
dT - ro (A-2)

m

or

dTtm
- 0.445 ro (A-3)dT

S

For the interval spanned by the data in this article, the

zenith opacities are on the order of 0.01 and the surface tem-

peratures vary by roughly 25°C. Hence, we would expect less

than 0.1 K variation in Tat m from variations in Tra.
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This article is the third in a series documenting the efficiency and noise temperature

characteristics of the DSN 64-meter antenna network prior to its upgrading to 70-meter

configuration./DSS 14 (Goldstone, California) is the last of the three large antennas to be

upgraded, and the test results presented here document its performance just prior to its

downtime during the end of 1987. Antenna area efficiency was found to be somewhat

higher at DSS 14 than at DSS 43 [Australia) and DSS 63 (Spain). The peak X-band effi-

ciency was determined to be 49.8 percent (without atmosphere), compared with 45.4per-

cent and 45.1 percent for DSS 43 and DSS 63, respectively. The X-band zenith system

noise temperature was found to be I to 3 kelvins higher than at the other two stations,

depending on which maser was chosen for the measurements. Ascribing efficiency differ-

ences to small-scale antenna surface roughness, DSS 14 may be regarded as having a 1..5-

to 1.6-ram rms surface as compared to the other two antennas with 1. 7- to 1.8-mm rms

surfaces.

I. Introduction

This article is the third in a series documenting the perfor-

mance of the DSN 64-meter network prior to its upgrading to

70-meter configuration. DSS 14 is the third of the three large

antennas to be modified; DSS 63 was upgraded in May 1987,

and DSS 43 in September 1987. DSS 14 will achieve its final

configuration by early 1988. The S- and X-band performance

of the overseas 64-meter antennas is documented in [1] and

[21.

Antenna calibration measurements were taken during the

months of August and September 1987. Because of a change

in radiometer calibration technique in the middle of the cali-

bration project (hourly noise diode calibration instead of ap-

proximately once every 6 hours), only those data from days

258,267, and 270 were used in the final data reduction. The

radio sources used on those days as standard efficiency cali-

brators were 3C123, 3C274, and 3C286. Subsequent to the

DSS 14 tests, modifications were made in the DSN radio source

list 1 which affected these sources. The changes involved

both flux and source size corrections, and it was necessary to

1M. Klein, A. Freiley, and P. Richter, DSN Radio Source List for An-

tenna Calibration, JPL Report D-3801, Rev. B (internal document),

Jet Propulsion Laboratory, Pasadena, California.
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apply these corrections to the measured efficiency values

after the fact. Since 3C274 is one of the strongest DSN cali-
brators visible from both the northern and southern hemi-

spheres (and is also used in both the DSS 43 and DSS 63 cali-

brations), it must be accepted that the efficiency calibrations

based on this source, as published in [1] and [2], are slightly
in error. The source size correction for 3C274 increased

0.369 percent. This would have the effect of increasing the
apparent antenna efficiency by approximately half this amount

(for a 50 percent efficient antenna). The effect of these changes

on the published DSS 43 and DSS 63 performance values will
be discussed later.

The DSS 63 calibration article [1] contains a great amount

of detail regarding calibration methods used and techniques

involved in data reduction and analysis. That reference should

be used if any uncertainty of meaning arises in the reading of
this article.

Data taken on the three listed days appear to be generally
well-behaved, and the weather was noted as clear with wind

not exceeding 15 mph. Psychrometric data were taken hourly

during the measurements, and this proved to be extremely
useful in determining adjustments for the "no-atmosphere"

antenna calibration values. Based on the temperature and rela-

tive humidity values given in the calibration report, an average

weather model for DSS 14 was developed for the 13-day span
of measurements. Total atmospheric attenuation was deter-

mined to be surprisingly constant over this time period, even
though the temperature and relative humidity values varied

greatly (e.g., the temperature ranged from 58°F to 103°F,

and the relative humidity varied, almost inversely, from
89 percent down to 7 percent). For the purposes of this arti-
cle, the S-band zenith attenuation was determined to be 0.025

dB, and the X-band zenith attenuation was determined to be

0.033 dB. These may be contrasted with the DSS 43/63 model
of 0.03 dB and 0.04 dB, respectively, for S- and X-band, for

year-average attenuation at those temperate locales.

After the data were corrected for flux and source size as

given in [3], it became clear that the efficiency values deter-

mined using 3C123 were about 3 percent high (about 1-1/2

efficiency percent) when compared to the efficiency values
determined using sources 3C274 and 3C286. This difference

was the same at S- and X-bands, and did not seem to be a

function of elevation angle (which would rule out a weather

model error for data taken on different days). After consulta-

tion (M. J. Klein, private communication), it was decided to

adjust the S- and X-band efficiency values by the factor 0.97

for those antenna efficiencies determined using radio source
calibrator 3C123. This radio source calibrator is about one-

fourth as strong as the strongest DSN standard calibrator

(3C274), and since 3C274 and 3C286 give results agreeing very

well with one another, 3C123 efficiency determinations were

changed. It is possible that 3C123 flux has changed; however,

at this time, the source of the discrepancy has not been deter-

mined. The problem will be examined in the future, and
3C274/3C123 comparisons using other antennas at Goldstone

may help resolve it. Although both 3C274 and 3C123 were

used in the DSS 63 calibration [1], the 3 percent difference

was not apparent in those data.

II. Antenna Area Efficiency

Figures 1 and 2 show the S-band antenna area efficiencies

both with and without the atmospheric attenuation included.

Note that area efficiency is referenced to a uniformly illumi-

nated aperture, 64 meters in diameter, at the given frequen-
cies. For S-band (2295 MHz), the 100 percent efficient antenna

gain is 63.75 dBi; for X-band (8420 MHz) it is 75.04 dBi.

It should be noted that data taken at the low elevation an-

gles (less than 10 degrees) show much scatter. This is possibly

due to atmospheric attenuation changes from point to point or
scintillations that affect the noise temperature measurement in

the on-source position. Also shown in the figures are second-

order curve fits to the data. Note that the curve fit in Fig. 2

(S-band efficiency without atmosphere) actually curves slightly

upward! This is obviously a curve-fitting anomaly, with a pos-

sible contribution from a slight atmospheric model error. It

would seem reasonable to assume that the S-band efficiency is
nearly a constant 59.4 percent at all elevation angles. The data

do not warrant a more complex description.

Figures 3 and 4 show the X-band area efficiencies both with

and without atmosphere. Note again the extreme spread of

measured values at elevation angles below 30 degrees. This

undoubtedly contributes to the large uncertainties in the shape
of the curve, even though the tight clustering of points in the

40- to 70-degree elevation region appears to determine the
peak value fairly well.

Table 1 gives the coefficients of the second-order curve fits

in Figs. 1 through 4. Also given in the table are peak values of
efficiency and the elevation angles at which they occur.

III. System Noise Temperature

Figures 5 and 6 show the S-band system noise temperature

both with and without atmospheric contribution. The two sets

of data represent data taken with two different masers. The
upper curve shows data taken with the Block V maser; the

lower curve is that taken with the SPD maser in a low noise

path. Because of the limited elevation angle range of the lower

data set, it was not curve-fitted to represent system noise tern-
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perature as a function of elevation angle. The upper data set

in Figs. 5 and 6 was fitted with a fourth-order curve, the coef-

ficients of which are given in Table 2. Note that in Fig. 5 (above

65 degrees) and in Fig. 6 (above 70 degrees) the extrapolated
values of the curve fit are created to be constant, as the actual

fourth-order curve varies radically from what would be consid-

ered a reasonable extrapolation.

Figures 7 and 8 present the X-band system noise tempera-
tures both with and without atmospheric contribution. Note

again two sets of data. The upper data set was taken with the

TWM-1 maser, while the lower data set was taken with the

TWM-2 maser. Only the upper data set was curve-fitted, owing
to the limited elevation angle range of the lower set. It appears

that a constant difference (approximately 3 kelvins) separates
the two sets. For the X-band curve fit in Fig. 7, the extrapo-

lation is constant above 75 degrees; for Fig. 8 it is constant

above 85 degrees.

IV. Error Analysis

A comprehensive review of error sources in this antenna cal-
ibration scheme is given in [1] and [2]. It bears repeating that

the major contributor to the error in determination of antenna
efficiency is the uncertainty regarding radio source flux density.

It is estimated that this uncertainty at S-band is -+0.3 dB (3o)

(-+3 percent, la); at X-band it is -+0.5 dB (3o) (-+4 percent,

lo). Indeed, the 3 percent efficiency adjustments at S- and

X-band are perhaps indicative of this problem. The absolute

accuracy in the determination of antenna efficiency for the

DSS 14 antenna (as determined similarly for DSS 43 and DSS
63) is thus stated as:

S-band: -+0.4 dB (30)

X-band: +0.6 dB (3o)

V. Comparison of Measured and Expected
Antenna Efficiencies

As described in [1] and [2], a comparison was made among

the 64-m X-band antenna performance expectations as given

by the physical optics (PO) and geometrical theory of diffrac-

tion (GTD) programs. The PO analysis was described in great
detail in those references and will not be repeated here. Of

interest here are the GTD calculations of antenna efficiency as

a function of elevation angle, taking into account the long-

period (_1 to 30 meters) gravitational deformation of the

main reflector surface, The GTD-generated efficiency curve is

modified by known or postulated hardware loss (0.821 dB;

cf. Table 3, items 8-11 in [1]), and this curve is then further

modified by various amounts of so-called Ruze loss, the loss

of antenna efficiency due to small-scale (_1- to lO0-centi-

meter) surface roughness.

Figure 9 shows the GTD curves with three levels of surface

roughness: 1.06 mm (the design expectation of rms panel and

subreflector tolerance), 1.5 mm, and 1.6 mm. It is seen that

the DSS 14 antenna efficiency curve corresponds over the
entire elevation angle range to an rms surface tolerance of
1.55 ram. Also shown on this curve are the DSS 43 and

DSS 63 efficiencies, which, as stated in previous articles, cor-

respond to surface tolerances of 1.7 to 1.8 mm. Note that the

DSS 63 antenna differed structurally from the DSS 14 and

DSS 43 antennas, and thus the greater efficiency falloff of

that antenna is not surprising.

VI. Future Updates for DSS 14, 43, and
63 64-Meter Efficiencies

Due to a recent change in the source size correction factor
for radio source 3C274 (see footnote 1), there exists a very

small discrepancy in the efficiency values determined for DSS

14 as compared with those determined for DSS 43 and DSS

63. For example, it is possible that the 0.369 percent increase

in X-band source size correction might increase the efficiencies

of the overseas antennas by as much as 0.2 percent (e.g., from

50.0 percent to 50.2 percent). This increase is small compared

to the scatter of data points (cf. Figs. 3 and 4 and Table 1),

and thus may be judged as not significant in a statistical sense.
Consultation with one of the authors of JPL Report D-3801

(see footnote 1) revealed that the present source size correc-
tion value should be considered interim only, and that an

updated and highly improved document will be published
within the next several months. 2 His advice in the matter of

efficiency adjustment was to make no changes at this time.
This article and its two precursors used radio source flux and
size corrections which were the latest available at the time.

Updated values of efficiency for the three stations can be

computed when the future DSN radio source list becomes

available, although values of tenths of an efficiency percent

are not judged significant in view of the absolute accuracy

levels presently attainable.

2M. J. Klein, private communication, Jet Propulsion Laboratory,
Pasadena, California.
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Table 1. Coefficients of second order curve fits for antenna area efficiencies

efficiency = a 0 + alO + a202

where 0 = elevation angle, degrees

Coefficient/parameter S-band (2295 MHz) X-band (8420 MHz)

With atmosphere With atmosphere

(cf. Fig. 1) (cf. Fig. 3)

a 0 0.567571 0.434121

a 1 7.446475 E-04 2.234165E-03

a 2 -5.887066E-06 -2.082133E-05

Peak efficiency, % 0.59112 0.49405

Peak angle, deg 63.244 53.651

Standard deviation, % 0.00354 0.00853

Without atmosphere Without atmosphere

(cf. Fig. 2) (cf. Fig. 4)

a o 0.592390 0.457946

a 1 1.936510E-06 1.572380E-03

a 2 4.675295 E-07 -1.541394E-05

Peak efficiency, % 0.594 (see text 0.49805

Peak angle, deg (see text) 51.005

Standard deviation, % (see text) 0.00859
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Table2.Coefficientsoffourth-ordercurvefitsfor S- and X-band system noise temperatures

Tsystem =a O +alO +a202+a303+a404

where 0 = elevation angle, degrees

Coefficient/parameter S-band (2295 MHz) a X-band (8420 MHz) b

a 0

a 1

a 2

a 3

a4

Zenith noise temperature, K

Standard deviation, K

a 0

a 1

a 2

a 3

a 4

Zenith noise temperature, K

Standard deviation, K

With atmosphere With atmosphere

(cf. Fig. 5) (cf. Fig. 7)

4.919551E+01 5.836215E+01

-2.040157E+00 -2.234962E÷00

6.445888E-02 6.128831E-02

-9.468854E-04 -7.517988E-04

5.169310E-06 3.378224E-06

Note: If0 /> 65 deg, Note: If0 _ 75 deg,

T = 21.161 K T = 25.211 K

21.161 25.211

0.334 0.358

Without atmosphere Without atmosphere

(cf. Fig. 6) (cf. Fig. 8)

2.727111E+01 3.355993E+01

-2.675004E-01 -5.586415E-01

2.027795E-03 1.278769E-02

2.917834E-05 -1.356839E-04

-3.911682E-07 5.376014E-07

Note: If0 _ 70 deg, Note: If0 _ 85 deg,

T = 19.098 K T = 23.203 K

19.098 23.203

0.239 0.284

aS-band (2295 MHz) specs: Maser SPD Blk IV, S/N 4002, 1.83 K; Maser Blk V, S/N 5002, 4.48 K.

bX-band (8420 MHz) specs: Maser Blk II, TWM-2, S/N 2007, 3.46 K; Maser Blk IIA, TWM-1,

S/N 2011, 3.82 K.
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This article describes the design of new control mode switching algorithms and logic

for JPL's 70-m antenna servo controller. The old control mode switching logic was

reviewed and perturbation problems were identified. Design approaches for mode switch-

ing are presented and the final design is described. Simulations used to compare old and

new mode switching algorithms and logic show that the new mode switching techniques

will significantly reduce perturbation problems.

I. Introduction

The servo controller for the NASA/JPL 70-m-diameter

antenna contains three control algorithms by which antenna
position is controlled. The control algorithms provide control

for antenna slewing, computer tracking, and precision tracking.

Switching between control algorithms plays a key role in

tracks which require frequent slewing between target posi-

tions. Mission support and particularly Very Long Baseline
Interferometry (VLBI) tracks require frequent slewing, for

which antenna repositioning time is critical. Thus, not only
must the control algorithms be designed to minimize antenna

repositioning time, but switching between the control algo-

rithms must be optimized to minimize perturbations.

The transition between control algorithms must be smooth

to prevent acceleration/rate perturbations which can excite

structural resonances, thereby increasing repositioning time

and adding to mechanical wear. Reducing perturbations is

particularly important for the 70-m antenna because of its

low structural resonances and existing mechanical gear wear.

This article describes new mode switching logic and algorithms

which will minimize acceleration/rate perturbations in pre-
vious servo controllers.

II. Background

The antenna servo control system consists of a position

loop closed around a rate loop. The rate loop is an analog

type I controller. A rate command (voltage) from the posi-

tion loop controller is compared to filtered tachometer feed-
back rate (voltage) to create a rate error. The rate loop adjusts

the actuator command signal to null the rate error which

results in moving the antenna at the commanded rate.

The position loop is closed by a digital computer, the
Antenna Servo Controller (ASC). The ASC positions the

antenna based on predicts (position commands). Three con-
trol algorithms reside in the ASC: (1) a slew mode called the

Large Error mode; (2)a computer tracking mode called the

Small Error mode; and (3)a precision tracking mode called

the Precision mode. The Large Error mode is used to slew
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the antenna over large angular displacements. The Small

Error mode is used to track predicts with encoder feedback.
The Precision track mode is used to track a precision posi-

tioner, the master equatorial (ME), using an optical link (an

autocollimator) as a position feedback device.

In the old Large Error mode, a digital rate servo was used
to slew the antenna. The input to the rate servo was calculated

from predicts and accounted for target motion. The rate servo
was a state controller where the state variables were estimated

by a constant gain state estimator. Encoder feedback was used

to update the state estimator.

The old Small Error mode was a type II position controller.

The Small Error mode also positioned the antenna based on

predicts. A state controller with an added integral error state
was used for the type II position controller. The state variables

were estimated by a constant gain state estimator. On-axis

encoder feedback was used to update the state estimator and

ultimately position the antenna.

The old Precision mode used a type II position controller

similar to the Small Error mode. Position feedback was pro-

vided by an autocollimator instead of on-axis encoders. The

autocollimator measures optical misalignment between the

antenna and the master equatorial and produces a voltage

proportional to the position error. The autocollimator signal,

once sampled, was digitally filtered and a secant correction

was applied to the azimuth position error for high elevation

angles. The autocollimator error signal was used to calculate

the integral error and the position error states in the state
estimator. The rest of the estimated states were calculated

from the antenna's on-axis encoder feedback. Using encoder

feedback for estimating the other state variables improved

damping.

Each of the above control algorithms calculated a rate com-

mand needed to drive the rate loop. The rate command was

limited before being converted to an analog voltage. Both rate
and acceleration limiters were used to limit the rate to ---0.25

degree/see and the acceleration to +--0.20 degree/see 2.

Switching between the three control modes was based on

the magnitude of rate commands, position errors, and auto-

collimator acquisition. Figure 1 presents the old switching

logic state diagram. The initial state was the Small Error algo-
rithm. A transition to the Large Error algorithm occurred

when the absolute value of the new rate command was greater

than a predetermined upper limit (INEW_RATEI > U

LIMIT). The transition from the large to the Small Error algo-
rithm occurred when the position error was less than the error

limit (LPOS_ERROR[ < LARGE_ERROR).

Switching between the Small Error and Precision modes

was more complicated. Three conditions were needed prior

to switching to the Precision mode from the Small Error

mode: (1)the Precision mode was commanded (i.e., PRECI-

SION MODE = 'TRUE'); (2)the autocollimator was within

signal acquisition range (i.e., ACQUISITION = 'TRUE'); and

(3) the digitally filtered autocollimator signal was small (i.e.,

IF_ERRORI < FILTER_LIMIT). All three conditions had to
be met to switch to the Precision mode from the Small Error

mode.

Conversely, when one of the following three conditions

was satisfied, a switch was made from the Precision mode to

the Small Error mode: (1)the Small Error mode was com-

manded (PRECISION_MODE = 'FALSE'); (2) autocollima-

tor acquisition was lost (ACQUISITION = 'FALSE'); or (3)
the absolute value of the calculated rate command was greater

than an upper limit (i.e., INEW_RATEI > U_LIMIT). Switch-

ing from the Large Error mode to the Precision mode and vice

versa was an illegal state transition.

III. Undesirable Perturbations

The old switching logic caused rate perturbations when

switching between control algorithms. Figure 2 is a strip chart

record of the rate command for the old switching sequence

from Small to Large and from Large to Small Error modes.

The data represent the rate command measured at the output

of the D/A (digital to analog) converter. Initially, the Small

Error algorithm was holding position. A one degree position
command created the condition (NEWRATE > ULIMIT)

causing a switch into the Large Error mode. The rate com-
mand increased linearly to the maximum rate because of

acceleration limiter saturation. As the antenna slewed, the

position error was reduced. When the position error became
small enough a switch was made to the Small Error mode. A

transient rate command occurred because of gain differences

between Small and Large Error modes.

The old switching sequence from Small to Large and from

Large to Small Error modes caused undesirable perturbations.

The rate perturbations are excessive and can excite structural

resonances and increase gear wear.

The old switching sequence from Small to Precision and

from Precision to Small Error modes was simulated. Figure 3

presents the results of the transition based on a 30 millidegree

misalignment between the antenna and the ME. The rate com-

mand measured at the D/A converter was plotted versus time.

Initially, the Small Error mode held position. A switch was
made into Precision mode. After five seconds, a second switch
was made back to Small Error mode. Simulations showed that

instability existed due to misalignment errors and differences
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in the gain vectors between Small and Precision modes. Mis-

alignments greater than 20 millidegrees cause instability and

antenna oscillations. Misalignments less than 50 millidegrees

would oscillate but eventually become stable.

The old switching sequence from Small to Precision and

from Precision to Small modes caused undesirable perturba-

tions. The transitions exhibit unstable response for large mis-
alignment errors and perturbations which can excite structural

resonances and increase gear wear.

The design goal was to develop new switching algorithms

and logic which minimize slew time and rate perturbations

and provide stable transitions. Therefore, the settling time

required to move the antenna between targets through large

angle differences will be minimized for VLBI tracking. Also,
perturbations will be minimized to reduce structural resonance

excitation and drive gear wear.

IV. New Design Approach

The design approach was to redesign the transition algo-
rithms and logic. Switching between Small and Large Error
modes and that between Small and Precision Error modes

were treated separately. Note that the basic tracking control

strategies, acceleration limiting, and rate limiting were not
changed.

A. Switching Between Small and Large
Error Modes

Analysis of switching logic between Small and Large Error
modes showed that transition perturbations could best be

improved by developing a new Large Error mode. Several con-

trol strategies for replacement of the Large Error mode were

investigated, i.e., rate servos, proportional controllers, gain
scheduling, and nonlinear gains. The control strategies were

analyzed for smooth mode transitions, response time, stability,

and simplicity. Design iterations suggested that a two-part

Large Error algorithm provided the "best" switching strategy

in terms of stability. First, a new Large Error mode will accel-
erate the antenna from the Small Error mode to the maximum

slew rate. A new Modified Small Error algorithm, which will

be part of the Small Error mode, will decelerate the antenna

from the maximum slew rate to Small Error algorithm tracking.

Accelerating from the Small Error mode to maximum slew

rate will be accomplished by using a predetermined accelera-

tion profile. This profile will minimize rate perturbations,

provide known acceleration time, and smooth transitions.

Decelerating from maximum slew rate to Small Error mode

tracking will be accomplished by a modified Small Error algo-

rithm which eliminates the integral error state. The Modified
Small Error algorithm would then be a type I controller.

Transition to the type II Small Error algorithm is accom-

plished by adding the integral error state. The transition to the

Small Error mode from the modified algorithm will be smooth

and stable with minimal settling time.

B. Switching Between the Small Error and
Precision Modes

Both gain matching between Small and Precision modes and

new switching algorithms were investigated to minimize rate

perturbations during mode switching. Matching small and pre-

cision mode state feedback gain vectors improved transition
performance but did not improve transition stability. Thus, a

switching algorithm was needed. Potential transition algo-

rithms included gain scheduling, a rate servo, and filtering the

position error. Investigations showed that filtering position
error significantly improved stability and provided smooth

mode switching.

V. Detailed Design of Mode Switching
Algorithms

The new mode switching algorithms and logic were designed

to switch between Small and Large Error modes and between

Small Error and Precision modes. The switching logic deter-

mines when to switch to a different control algorithm while

the mode switching algorithms control the transition between
control algorithms.

The new 70-m antenna control algorithm switching logic is

presented in Fig. 4. The Small Error mode is the initial state
in the state diagram. Switching to the Large Error mode from

the Small Error mode occurs when a new position command

requires the antenna to move over a large angle. New position

commands are received and evaluated once per second to

determine if a slew is required. Transitions from the Large to

the Modified Small Error algorithm occur when the maximum
slew rate is attained. All transitions between the Small Error

and Precision modes remain the same as the old transition

logic.

Three new mode switching algorithms were developed: a

Large Error algorithm, a Modified Small Error algorithm, and
a digital filter between Small Error and Precision mode transi-

tions. The new Large Error algorithm has two parts: (1)to

accelerate the antenna to the maximum slew rate (this is called

the new Large Error mode); and (2) to decelerate the antenna
from maximum slew rate and transition into the Small Error

algorithm (this is part of the new Small Error mode).
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The purpose of designing a new Large Error mode is to
smoothly accelerate the antenna to the maximum slew rate.

When a slew is required, a predetermined acceleration profile

is used to accelerate the antenna from the tracking rate to the

maximum slew rate in the appropriate direction.

The acceleration profile is generated in real time by using

a digital filter. Initializing the filter with the last rate com-

mand and commanding the maximum rate produce a step

response referenced to filter initialization. A third order Bessel

digital filter was used as the Large Error algorithm rate com-

mand filter. The advantages are twofold: a small overshoot due

to a step in rate and a smooth acceleration profile. The band-
width of the filter is selected such that the ratio of maxi-

mum rate to maximum acceleration is less than or equal to the
ratio of the rate limit to the acceleration limit. The 70-m

antenna has a rate limit of +0.25 degree/sec and an accelera-

tion limit of +0.20 degree/sec 2. Thus, the maximum accelera-

tion to rate ratio must be less than or equal to 0.8.

Figures 5 and 6 show the rate step response and its deriva-
tive, respectively, for a Bessel filter with a I rad/sec band-

width. The step response shows how the rate command (filter

output) accelerates to the maximum rate and has a 4 percent

overshoot. The derivative of the step response (in Fig. 6)

shows the acceleration profile by which the antenna is accel-
erated. The acceleration to rate ratio is 0.8.

Once the maximum rate is achieved in the Large Error

mode, a transition is made to a type I controller. For simplic-

ity, the tracking Small Error algorithm is used for the type I
controller with the integral error limited to zero which effec-

tively "turns off" the integrator. As a result, the tracking

controller acts as a type I controller and smoothly decelerates
the antenna. When the position error is small (a 30 millidegree

threshold is used), the integral error is "turned on" and track-

ing with a type II controller begins. Setting the integral error
limit to a finite value prevents oscillations from occurring

when tracking rates vary.

The transitions between Small Error and Precision modes

were also improved by digital filtering. The same Bessel filter
described above was used to filter the position and autocolli-

mator errors during transitions. Figure 7 describes the Small-
to-Precision and Precision-to-Small-Error mode state switching

diagram. When a Small Error to Precision transition is made,

the mode switching filter is initialized with the last position

error. The new position error (or equivalently the autocolli-

mator error) is calculated. The new position error is filtered by
the transition filter. This filtered error is used by the precision

control algorithm to position the antenna. When the filtered

error is greater than the position error, the filter is "turned

off." The same procedure is used when switching from the
Precision mode to the Small Error mode.

Vl. Simulation Results

The new transition algorithms and logic were coded in the
70-m antenna simulation software and simulated using a

Monte Carlo simulation. Mode switching simulations between

Small and Large Error modes and between Small and Precision
modes were made.

A mode switching simulation was made between the new

Small and Large Error modes to demonstrate switching logic

and algorithms. Figure 8 presents the simulated rate command

measured at the output of the D/A converter. Initially, the

Small Error algorithm was holding position. A one degree

position command caused a switch into the Large Error

algorithm (the new Large Error mode). The rate command

smoothly accelerated to the maximum rate. At the maximum

rate, the transition was made to the Modified Small Error algo-

rithm (part of the new Small Error mode). No rate perturba-
tions occurred at the transition because the rate command

produced by the Modified Small Error algorithm is greater
than the maximum slew rate and is thus limited to the maxi-

mum slew rate. The rate limiter effectively eliminates transi-

tion perturbations.

As the position error decreased, the rate command dropped

below the maximum slew rate. After the position error became

small enough, a transition was made to the Small Error algo-

rithm by "turning on" the integral error state.

Comparing Fig. 8 to the results of the old mode switching

logic in Fig. 2 shows that a significant improvement was

attained in the number of switching perturbations. The only

discontinuity produced by the new mode switching occurs
when initial deceleration from the maximum slew begins. At

this point, the acceleration is discontinuous and has a jump

which, at most, is equal to the acceleration limit. However,

this discontinuity is acceptable.

The new mode switching algorithm between Small Error

and Precision modes was also simulated. Figure 9 presents the

simulated rate command measured at the output of the D/A

converter. Initially, the Small Error algorithm was holding

position. A transition was immediately made to the Precision
mode. A second transition was later m_de from Precision to

the Small Error mode. A 30 millidegree misalignment error
between the antenna and the ME was assumed for both transi-

tions. Simulations showed that transition instability due to

misalignment errors was reduced. Misalignment errors of up

to 50 millidegrees were simulated and were stable. With 50
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millidegree misalignments the acceleration limiter started to

become saturated but the control algorithm remained stable.

VII. Summary

New mode switching algorithms and logic were designed for

switching between 70-m control algorithms. Transitions to

the Large Error algorithm are made when the position com-

mand requires a large angular motion. A transition from the

Large to Small Error mode is made when the position error is
small. All transition logic between the Small Error and Preci-

sion modes remains the same as the old mode switching logic.

A new Large Error algorithm was designed. The Large Error

algorithm was separated into two parts: the Large Error mode

and the Modified Small Error algorithm. The Large Error
mode accelerates the antenna from the Small Error mode to

the maximum slew rate by using a digital Bessel filter. The

Modified Small Error algorithm (which is also part of the new

Small Error mode) is a type I controller. It decelerates the
antenna from the maximum slew rate and transitions into

the type II Small Error algorithm by "turning on" the integral
error state in the state controller. Simulations showed'the new

mode switching between Small and Large Error modes provide
smoother transitions with fewer acceleration/rate perturbations.

The mode switching between Small Error and Precision

modes was improved by using the same Bessel filter as in the

Large Error mode and by matching control gain. The mis-

alignment error was filtered to provide smoother and more
stable transitions. Simulations of the Small and Precision mode

switching showed improved transition stability, robustness,
and smoothness.

The new servo controller mode switching logic and algo-

rithms for the 70-m antenna provide better overall perfor-

mance than the old mode switching logic. The better perfor-

mance will reduce potential structural resonance excitation

and gear wear.
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In the precision-pointing mode the 70-meter antennas utilize an optical link provided

by an autocollimator. In an effort to improve reliability and performance, commercial

instruments have been evaluated as replacement candidates, and upgraded versions of the

existing instruments have been designed and tested. The latter have been selected for the

Neptune encounter, but commercial instruments with digital output show promise of sig-

nificant performance improvement for the post-encounter period.

I. Introduction

When the 70-meter antennas of the Deep Space Network

are operated in the precision-pointing mode, an optical link

provided by an autocollimator plays an important role in the
measurement of pointing angles. Over the past several years

there has been an effort to upgrade both the reliability and the

performance of the precision-pointing mode by upgrading or
replacing the instrumentation which provides this link. Sec-

tion II reviews the rationale for the use of a pointing subsys-

tem requiring an optical link and describes the elements of the

subsystem. Section III discusses the general technology of
autocollimators and the parameters used to characterize them.

It then describes and compares detection techniques used in

commercial autocollimators. Section IV reports on the evalua-

tion of several commercial instruments. Most of these evalua-

tions are the result of testing in the JPL autocollimator facil-

ity. Section V describes development work done at JPL in the

areas of improvements to the present autocollimators and the

interfacing of an autocollimator with a digital output to the

antenna control system. Section VI summarizes the present

situation and makes recommendations concerning the auto-

collimators both for the near term and for the period after

Neptune encounter.

• II. Rationale for the Optical Link in
Antenna Pointing

The 70-meter antennas, like most large antennas, are in

altitude-over-azimuth mounts. In the ideal situation an alidade

structure rotates about an axis perfectly aligned with the local

vertical and supports a perfectly horizontal axis about which
the tipping structure rotates carrying the dish, subreflector,

feed, etc. In this ideal situation it is only necessary to trans-

late the astronomical coordinates, declination and hour angle,

into azimuth and elevation in order to point the antenna. In

actual practice the situation is far from ideal. Foundations

may settle, moving the azimuthal axis off the vertical and
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giving a tilt to the elevation axis which depends upon the azi-

muthal angle. In addition, solar heating, aerodynamic forces,

and gravitational loading will distort the structure, introduc-

ing pointing errors.

There are two general approaches to dealing with the situa-
tion. One is to measure rotation about the azimuth and eleva-

tion axes with shaft encoders and depend upon mathematical

modeling both for the correction of systematic errors and
disturbances and for the transformation to declination and

hour angle. The other approach is to utilize a separate pointing-

metrology system which is designed to be less susceptible to
errors and disturbances than the antenna and which deter-

mines the pointing direction of the antenna. Such a pointing-

metrology system can range in complexity from one which

surveys many points on the dish, subreflector, and feed and

solves for the instantaneous pointing direction to one which

determines a single reference direction on the tipping struc-

ture. Neither approach can completely eliminate the need for

modeling, but they can reduce the number of parameters

which must be modeled. The present system for the 70-meter

antennas determines a single direction, that of the normal to
the intermediate reference structure located on the center

line of the dish between the vertex of the dish and the eleva-

tion axis.

There are five major elements in a pointing-metrology sys-

tem of the latter type: a mechanical support structure that is

as independent of the rest of the antenna structure as possible;
an element articulated about two axes which establishes the

pointing direction; encoders to determine the pointing direc-

tion of the articulated element; a link to the reference element

on the antenna; and an enclosure to minimize environmental

disturbances. In principle the link could be provided in a num-

ber of ways. In practice there are strong reasons for making it
an optical one. The chief reason is disturbance isolation. By

its nature an optical link is unidirectional and, in the appro-

priate configuration, isolates the articulated element from

disturbances to the antenna, particularly vibration. By using an

optical link as opposed to a mechanical one it is possible to

have independent motion of the antenna and the articulated
element. This facilitates slewing and allows for operation in

a lower-precision mode with elevation and azimuth encoders,

should the precision mode be inoperative. A light beam is

weightless and can, with proper design of the instrumentation,

transfer a pointing direction free from errors caused by gravity

deflections. Finally, the techniques for providing the instru-

mentation are well established with substantial field expe-

rience in a variety of applications.

A metrology system, such as described above, may be con-

figured to operate in two distinctly different ways. The artic-

ulated element of the metrology system may be pointed in the

desired direction with its encoders and the link used to gener-

ate a control signal for the antenna, causing it to follow the

articulated element. Alternatively, the link may be used to
drive the articulated element to follow the antenna. The en-

coders of the metrology system then give the present point

direction of the antenna. The pointing-metrology system of
the 70-meter antennas is used in the first of these two modes

although much of the hardware needed for the second mode is

in place.

The actual configuration for the pointing metrology system

of the 70-meter antennas, shown schematically in Fig. 1, is the

following: A central support column rises from the foundation

along the azimuthal axis to a point a few feet below the eleva-

tion axis. The articulated structure is in an equatorial-fork

mount similar to those used for telescopes and supports a

plane mirror. The pointing direction of the metrology system

is the normal to the plane mirror. Its angular position in decli-

nation and hour angle is measured by an Inductosyn trans-

ducer on each axis. The pointing direction is transferred to the

intermediate reference structure by an optical link provided by

an autocollimator. The autocollimator projects a beam of light
onto the plane mirror and develops an electrical output signal

proportional to the angular offset of the returned beam. These

signals are developed for rotating about the elevation axis and

a direction orthogonal to it (cross elevation) and serve as the

control signals _'or pointing in elevation and azimuth. The sig-

nal flow is shown in Fig. 2. The critical nature of the optical

link is evident and the following sections discuss its implemen-
tation in detail.

III. Autocollimator Technology

A. General Characteristics

A general autocollimator configuration is shown in Fig. 3.

Light emitted from a source at the focus of a lens is reflected

by a beam splitter and formed into a parallel beam by the lens.
This beam is returned by the mirror whose rotation is being

measured and is focused by the lens on a position-detection

element. When the mirror is precisely perpendicular to the axis

of the lens, the returned spot is centered on the element. As

the mirror is rotated the spot is moved on the element. This

generates a signal proportional to the linear displacement of

the spot which for the small angles involved is proportional to

the mirror rotation. The angular coverage at zero working dis-

tance is determined by the ratio of the field-stop size to the

focal length of the objective lens. As the working distance

increases, a given angular deflection of the mirror causes more

of the return beam to miss the entrance aperture of the lens.

This results in a decrease in signal which limits performance.
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B. Parameters

Several parameters are required to characterize an autocol-
limator. Some of these can be represented on the transfer

curve shown schematically in Fig. 4, which plots the electrical

output as a function of angular offset. Of particular impor-
tance for control functions are those parameters relating to the

central part of the curve: the slope, the linearity, and the off-

set at null. The other parameters, the linear range and the ac-

quisition range, are of importance for initial alignment but do

not figure in the performance once a control loop has been

closed. Other parameters of importance not shown on the

curve are maximum working distance, noise-equivalent angle,

electrical phase shift, cross-coupling, and all-attitude sensi-

tivity. Table 1 gives the specified values for these parameters
for the DSN autocollimators.

The maximum working distance and the noise-equivalent

angle (NEA) are very closely connected. At the working dis-
tances encountered in the antenna installation the NEA is

determined primarily by air turbulence and not by the intrinsic
instrument characteristics. At very short working distances

the converse is true and the NEA is determined by the instru-

ment characteristics. The electrical phase shift is a measure of

the response to a moving mirror. It must be traded off against
instrumental NEA. The cross-coupling is a measure of the

degree to which an angular offset about one mirror axis pro-

duces a spurious output for the other axis. All-attitude sensi-

tivity is a measure of spurious outputs produced by tipping
the instrument in a gravitational field.

C. Description of Detection Techniques

The selection of the technique for detecting the position of

the returned spot in the focal plane is a critical design decision,

and a number of techniques have been used in commercial

instruments over the years. Figures 5 and 6 show the tech-

niques used in instruments tested in this study. Figure 5 shows

mechanical scanning of the image of the source aperture over
the detector field of view. There are many ways in which this

can be done both in terms of the shapes of the source and

detector apertures and in terms of the scan pattern. The par-
ticular one shown is used in the Kollmorgen-built instruments

currently being used on the antennas. A rotating optical ele-

ment nutates the image of the source aperture on the detector

aperture. In the nutational motion the center of the image
travels in a circle, but the image does not rotate. When the

returned beam is in the null position this circular motion is

centered on the detector aperture and the detector output has

zero first-harmonic content. As the image is displaced from the

center of the detector, the first harmonic of the detector out-

put increases. The phase of this signal indicates the direction

of displacement. Since the signals for each axis are in quadra-

ture they can readily be separated by phase-sensitive rectifica-

tion. The square source aperture generates a strong fourth
harmonic in the detector output, but this is removed by the

filtering which follows the phase-sensitive rectification.

Figure 6 shows four detecting techniques which do not
involve mechanical scanning. In the interest of clarity all con-

figurations are shown for a single axis of motion. All are adapt-

able to two-axis operation but not with equal facility. The
dual source has been widely used in a variety of implementa-

tions for many years. The sources are half-wave modulated

180 degrees out of phase, and synchronous rectification of

the ac component of the detector output is used to develop

the output signal. Davidson Optronics has used this technique
for a number of years in their line of autocollimators. They

use gas-discharge lamps as the light source and implement two-

axis operation by using two wavelength regions: one obtained

from mercury-vapor lamps, and the other provided by neon

lamps.

The dual source has also been used by Micro-Radian for sev-

eral years in their line but in a different implementation [1].

They use two extended-area light emitting diodes (LEDs)and

avoid the light losses inherent in a beam splitter by placing the

detector behind the gap between the sources. Since this

arrangement does not lend itself to two-axis operation with a

single optical system, Micro-Radian uses two separate optical

systems mounted close together. Cross talk is avoided by using

a different modulation frequency for each axis.

The split detector is used in a variety of optical sensing sys-
tems including autocollimators and is commonly constructed

by placing two silicon photodetectors on a single substrate.
The outputs of the two detectors are combined as (A- B)/

(A + B) to yield the position-sensitive signal. Generally the dc
processing is used. Unlike the dual source, the dual detector is

readily extended to two-axis operation by dividing the detec-

tor into quadrants and processing the signals as (A + B - C - D)/

(A+B+C+D) for one axis and (A+B+C-D)/(A+B+C+D)
for the other axis.

Lateral-effect photodetectors are an alternative use of

silicon-detector technology. The detectors are produced by

diffusing a P-type dopant and an N-type dopant into opposite
sides of intrinsic silicon base material. Two contacts, one at

each end of the sensor, provide alternative paths for the photo-

current, and the division of the current between the two con-
tacts is a measure of the location of the spot of light on the

detector. Linearity is fairly good over the central 25 percent of

the area and the total range can be quite large [2]. Like the

dual detector the processing is (A - B/A + B), and extension to

two axes is accomplished by adding a second set of contacts.
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The linear-array CCD (charge coupled device) is signifi-

cantly different from the other devices of Fig. 6 in that it

involves discrete pixels read out sequentially. Typically the

source aperture is made in the form of a slit so that motion in

the direction perpendicular to the array will not cause loss of

signal. The slit image is made wide enough to spread the light

over several pixels for accurate centroid determination.

D. Comparison of Detection Techniques

A mechanical scanning system can, if carefully designed

and constructed, yield high quality performance. The accuracy
of the scanning motion must be high, and the sensitivity of the

detector and illumination of the source aperture must be very

uniform. Since there are practical upper limits to the angular

speed of the scanning element, the modulation frequency is

limited to the 100 to 200 Hz range. The filtering required
after the synchronous rectification in this frequency range

limits the signal bandwidth for some applications. The use of

mechanical scanning also imposes an operational limitation

because of the finite bearing lifetime.

The dual source technique also requires good uniformity of

illumination over the source apertures. In addition the source

must have good modulation characteristics. In practice this
also means sources of low brightness if a reasonable level of

system complexity is to be maintained. The gas discharge

lamps used by Davidson Optronics for this purpose have only
a few hundred hours of life. The LEDs used by Micro-Radian

have very long life but low brightness. This limits their applica-

tion to single-axis instruments and modest working distances.

The dual or quadrant detector provides a high-accuracy sys-

tem over a limited angular range. Again, source uniformity is

important. If a substantial linear range is required the source
must be of large lateral extent as well as very uniform. If the

linear range is limited but a large acquisition range is required,
this detector is very good. Since the zero position is marked

by the physical divisions of the detector surface, the device

lends itself to systems requiring a well-defined zero.

In contrast, the lateral-effect photodiode can be used with a

concentrated source which need not be particularly uniform
since charge is integrated over the entire source image. An addi-

tional advantage of the lateral-effect photodiode is that it

intrinsically has a large acquisition range. Disadvantages are

that the central region over which the behavior may be con-

sidered linear is very limited and there is no physical identifi-
cation of the axis point as there is in a divided detector. Gen-

eral indications are that the best linearity is obtained with

single-axis units. For example, data sheets from SiTek Labora-

tories (Sweden) show typical nonlinearities of ±0.1 percent for

single-axis units and -+0.5 percent for two-axis units.

The linear CCD has the great advantage that the pixels are
fixed in the detector and are in one-to-one correspondence

to the angular offset of the returned beam. If pixels are dis-

placed from the ideal location as a result of manufacturing
errors, a one-time calibration is sufficient to correct for this.

As has already been indicated, it is desirable to spread the

image of the source aperture over several pixels in order to

obtain a better centroid of the image. A simple approach is a

small amount of defocus. If done correctly the centroid can

be determined to one-twentieth of a pixel. Since the pixels

must be read individually and the resulting signals processed

to obtain the centroid, there is an intrinsic delay in the output.

This may be significant for applications requiring higher band-
widths and is the chief drawback to the use of CCD detectors

in this application.

IV. Evaluation of Commercial
Autocollimators

In an effort to find a replacement for the Kollmorgen-built

instruments a number of commercially available autocolli-
mators were evaluated. Most were evaluated in the autocolli-

mator test facility at JPL. In two instances the manufacturer's

facility was visited, and for all instruments there were detailed

technical discussions with the vendor or his representatives.

The evaluation criteria were whether the instrument (1) could
meet the present specification (Table 1); (2) could meet the

optical, electrical, and mechanical interface requirements on

the antenna; and (3) would be easy to maintain.

In considering the requirements, only the interface con-
straints of the intermediate reference structure were taken into

account, and the question of operation from the master equa-

torial was not addressed. This limitation on the scope of the

study was adopted because all autocollimators investigated
were packaged as an optical head connected to a separate

electronics box and were of sizes and shapes which precluded

installation on the master equatorial without extensive
re-engineering.

In the following discussion autocollimators are grouped by
manufacturer. There is no particular significance to the order

in which they are discussed.

A. Davidson Optronics

The optical head of the Davidson instrument, model D-696,

is physically large. The optical head is approximately 280 ×

230×203mm (11×9× 8inches) with a lens aperture of

50.8 mm (2 inches) and a lens barrel diameter of 72.7202 mm

(2.863 inches). The electronic unit is 610 X 405 X 255 mm

(24 × 16 X 10 inches). It has been in use for many years and is

a standard for a number of military applications. The instru-
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ment, as was discussed above, uses gas-discharge tubes with a

relatively short life. This factor, together with the large physi-
cal size and attendant mounting difficulties, led to a decision

not to test this instrument.

B. Micro-Radian

Micro-Radian has offered a temperature-compensated instru-

ment based on single-axis optical heads 203 mm (8 inches)

long and 50.8 mm (2 inches) in diameter for a number of years.

The lens aperture is 25.4 mm (1 inch)and the barrel is 38.1 mm

(1.5 inches) in diameter. For two-axis operation, model 145D,

two optical heads are mounted side by side and connected to

a single electronics unit of approximate dimension 305 X

230 × 155 mm (12 X 9 × 6 inches). Since the dual-axis instru-

ment uses single-axis optical heads, only single-axis instru-
ments were evaluated. Two examples of the single-axis instru-

ment, both model 150, were extensively tested in the JPL

facility, although not all tests were performed on both instru-

ments. Transfer curves were measured at various working

distances; cross-coupling and NEA were measured; all-attitude

sensitivity was checked; and phase shift was measured. Both

instruments showed good transfer-curve characteristics at

shorter working distances but did not meet requirements at

2.4 m. One instrument showed acceptable linearity at about

1.8 m but did not return enough signal at 2.4 m. The other

instrument would operate at 2.4 m but did not meet the

linearity specifications in the vicinity of zero.

The phase shift tests were made with a variable-frequency

oscillating mirror and were carried out at various settings of
the bandwidth control. It was found that at 300 Hz bandwidth

the phase shift at 5 Hz was negligible. At 100 Hz bandwidth

the phase shift at 5 Hz was approximately 10 degrees.

The double-barreled construction of the optical head used

by Micro-Radian prevents it from being a direct substitution

for the Kollmorgen 874 currently being used on the antennas,

and some modification of the optical assembly on the inter-

mediate reference structure would be required. The simplest
modification would be to increase the size of the reflector

closest to the autocollimator to accommodate both beams.

The most elaborate modification would be to extend the

intermediate reference structure, bringing the optical assem-

bly much closer to the master equatorial, and to mount the

instrument in looking directly at the master-equatorial mirror,

thus minimizing the number of reflections. If such extensive

modifications were made, the successful operation of the

Micro-Radian instrument could be predicted with a high

level of confidence. If, on the other hand, the optical assem-

bly were modified only the minimum amount, the working
distance would remain large and the four relay reflections

would remain in the optical path. Since the test results indi-

cate marginal performance under these conditions, the Micro-

Radian instrument was dropped from further consideration.

C. United Detector Technology

For a number of years UDT has offered a line of position

sensors based on quadrant detectors and lateral-effect photo-
diodes. The line consists of a variety of optical heads for dif-

ferent applications and a number of alternative electronic
units for signal processing and data output. The first auto-
collimator in this line was the model 1000 and was a modular

unit with interchangeable lenses and detectors. It was tested

for this application with both types of detectors and with
both the 200 and 400 mm focal length lenses. The results

of the tests were promising but there were shortcomings.

Chief among these was the modular construction with joints

which would not provide the required long-term mechanical

stability. In addition, the best performance was obtained with

the 400 mm lens which had an 88.9 mm (3.5 inch) barrel

diameter and a 69.85 mm (2.75 inch) aperture. This pre-

sented problems with both the optical and mechanical
interfaces.

Some time after the completion of the above tests a model

1010 was introduced. The optical head for this was a non-modu-

lar, compact unit with a lens barrel of 38.1 mm (1.5 inches)
and a 25.4 mm (1 inch) aperture. The small size of this con-

figuration removed the optical and mechanical interface prob-

lems, and the one-piece construction removed the potential

problems with the modular approach. As soon as an instru-

ment became available it was tested extensively. The results

were extremely poor in terms of sensitivity, stability, and

NEA. These results were reported to the manufacturer, who

undertook an investigation of the manufacturing process. It

was finally determined that an incorrectly specified beam

splitter had been used in the first batch of instruments.

An instrument with the correct beam splitter was subse-

quently obtained and tested. At a working distance of 2.1 m

(84 inches) one axis could be measured and gave reasonable
results. The other axis, however, did not yield usefuloutput.

This was traced to poor alignment of the illumination from

the LED source with the optical axis of the instrument. A
third instrument was obtained and showed the same problem.

For this instrument the misalignment was measured to be

approximately three-quarters of a degree.

The conclusions were that the model 1010 could only be

used if the working distance could be reduced and if the manu-

facturer were able to improve the alignment of the illumina-

tion with the optical axis. The question of thermal sensi-

tivity was not addressed. Even if the other difficulties could

be overcome, this would remain a potential problem.
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D. M611er-Wedel

The M611er-Wedel autocollimator (J.D. M611er Optische

Werk GmbH, West Germany) came on the market late in this

study. Its optical head has a 65 mm (2.559 inches) lens barrel

and an aperture of 50 mm. The overall dimensions of the

head are approximately 380 × 203 X 127 ram. Fairchild

1728 pixel linear CCD array detectors are used for each axis.
The centroids are calculated by a combination of analog and

digital processing and output digitally on an RS-232 port.

Since the instrument has a digital output it was necessary

to design and build an interface unit to meet the electrical

interface requirements for analog signals. To allow time for

this, the instrument was leased for an extended period rather

than borrowed for a single test. The interface unit receives

the digital data stream from the autocollimator, separates the

data for the two axes, and converts it into two analog voltages

of appropriate size. The interface unit is described in more
detail in Section V.

work of preparing the required interface electronics was

completed and will be described in the next section.

V. Development Work at JPL

In addition to the maintenance of the Kollmorgen instru-

ments and the testing of commercial instruments, three

developments have been carried out at JPL. They are (1) the

improvement of the Kollmorgen 874 without changing its

working principle; (2) the replacement of the scanning system
of the Kollmorgen instrument by an array detector without

changing the optical or mechanical configuration or the elec-

trical interface; and (3) the construction of an interface for

the M611er-Wedel. The motivation for these specific tasks was

preparation for the Neptune encounter, and their scheduling

and the level of effort were strongly influenced by this fact.

Accordingly, development was undertaken in parallel with

the plan of dropping the less promising approaches at the

appropriate time.

First tests indicated that the instrument was extremely

precise, had adequate working distance, and generally met all

specifications with ample margins, except all-attitude sensi-
tivity and speed of response, which in the original configura-

tion was much too slow. These points were discussed with

Wilhelm Duis, the cognizant engineer from M611er-Wedel,

during a visit to JPL. He proposed two modifications: (1) a

stiffening collar at the junction of the lens barrel and the body

of the optical head; and (2) a high-speed data mode in which
there was no averaging of successive centroids and no use of
the stored calibration. With these modifications the all-attitude

specification of three arc seconds peak to peak was met and
the data rate raised to 100 readings per second. The removal

of the averaging and stored-calibration routines had an insig-

nificant effect on the performance for this application. The
linearity remained excellent and the NEA was acceptable.

Since there is a fixed processing and communication delay,

the time constant was chosen rather than the phase shift as

being a better representation of the instrument characteris-

tics. This measurement was made by introducing a step change

in the minor angle and photographing the analog output from

the interface unit on an oscilloscope. The time constant

was measured to be 0.0134 sec. If a simple RC filter is as-

sumed, this corresponds to a phase shift of 23 degrees at
5 Hz.

Since the decision was made to purchase the instrument

and incorporate it into the autocollimator test facility, and

since other options presented fewer interface problems, it
was decided to defer further work with the M611er-Wedel

instrument as a replacement for the Kollmorgen 874. The

A. Improvements to the Kollmorgen 874

The improvements undertaken in this task leave the basic
operating principle of the model 874 unchanged. It remains

a mechanically scanned system. The major improvements are

in the areas of illumination, mechanical reliability, and circuit

stability.

The original design of the model 874 utilized a separately

mounted lamphouse connected to the instrument by a bundle

of optical fibers. The design depended on the random arrange-
ment of fibers in the bundle to assure uniform illumination

over the source aperture. This often resulted in unsatisfactory

source uniformity, changes in illumination and the attendant

zero shift when the fiber bundle was moved, and problems
with damaged fibers. To overcome these problems, a new

lamphouse was designed keeping the same transformer and

lamp but mounting directly to the instrument housing. The

flexible fiber bundle was replaced with a rigid light pipe, and

the diffuser directly behind the aperture was improved by

shaping the side toward the incident light into a lens. These

changes resulted in a significant improvement in light-source

performance.

The mechanical scanning in the model 874 is provided by a

nutation plate rotating at 9000 rpm. The motor which drives

it must operate at approximately 5600 rpm, and motor life

has long been a problem. One of the modifications was to

install a longer-lived, higher-torque motor. This entailed a new

motor mount and an adjustment of the supply voltage.

The approach to the problems of light source variations and
the variation of returned flux with distance constitutes a sig-
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nificant part of autocollimator design. The approach used in
model 874 is that of automatic gain control. The level of the

direct current from the detector is used to control the gain of

the ac amplification to keep the sensitivity to angular varia-

tions (slope of the transfer curve) constant. The experience

with the AGC of the 874 has been quite varied. For some units

the AGC works well and a constant output can be maintained
for wide variations in the flux on the detector. For other

units there have been problems with excessive phase shift and

instabilities if the circuit is adjusted for good AGC operation.

Since the Mark IVA firmware can accommodate changes in

the slope of the transfer curve and since the transfer curve

slope can be measured in the field by fixing either the antenna

or the master equatorial and scanning the other, it was decided

to replace the AGC circuit with a simple gain control. Under

this approach the instruments are shipped out with a gain set-

ting which gives the specified slope to the transfer curve at
2.44 m working distance in the laboratory environment. When
the instrument is installed for the antenna, the gain is mea-

sured and entered into the control computer, and this gain is

checked from time to time as required.

The changes outlined here as well as some other minor cir-

cuit improvements are being implemented in instruments as

they come in for routine repair and recalibration.

B. Replacement of Scanning System by a Circular
Detector Array

To this point the only options that have been discussed

have been upgrading the model 874 without changing the

operating principle or replacing it completely with a commer-
cial instrument. A third option is also being pursued: that of

keeping the optical and mechanical configuration of the 874

intact but replacing the scanning system with an array detector.

This has the considerable advantage of leaving the optical and

mechanical interfaces unchanged. The approach had been
under consideration for several years, but lack of a suitable

detector had blocked progress. When the Parkes Radio Astron-

omy Observatory in Australia reported good results with a
Reticon RO-64 circular array detector, it was decided to

investigate its use in the model 874. The chief issues were

those of sufficient photometric response and sensitivity to

variations in illumination across the source aperture. Promising
results from simulation studies and laboratory test led to a

prototype test on DSS-14 in September 1987. Except for a

minor problem with the acquisition indicator, the performance

was satisfactory during a month of testing. The decision was

made to proceed with an engineering model, which is now
under construction.

The operating principle of the modified instrument (desig-

nated 874-64) is very similar to that of the original model 874

except that the scanning of the array has replaced the mechan-

ical scanning. The RO-64 detector consists of 64 silicon photo-

diodes in a circular array 2 mm in diameter. In response to a

clock signal the elements are read out continuously in sequence.

This has an advantage, in addition to the quite obvious elimi-

nation of mechanical scanning, in that each of the 64 elements

integrates continuously over the time interval between read-

outs. As a consequence, signal-to-noise ratios are greatly

improved over those of a scanning system of comparable
resolution. Furthermore, scanning rates may be much higher

than for mechanical systems, resulting in higher bandwidth

systems. A circular source aperture is used, and the image on

the detector is slightly defocused to produce tapering illumi-

nation at the edge of the image. When the image is centered

on the array, all pixels in the array give the same signal. As

the center of the image moves in a particular direction, the

signals from the pixels toward which the image is moving

increase and those diametrically opposite decrease.

The block diagram for the electronics is shown in Fig. 7.

The clock, counters, and dividers generate the clocking sig-

nals for the circular array and the reference signals for the
demodulator. A synchronizing signal generated by the array

on the completion of each scan synchronizes the demodula-

tion signals with position on the array and enables the demod-

ulators to output signals corresponding to designated X and Y

directions. A by-product of this is that it is possible to elec-

tronically "rotate" the array to place the axes in the desired

directions. The signal from the detector consists of a train of

pulses at a constant repetition rate amplitude modulated by

the variation of the light intensity around the array. Although

the functions are not in fact sequential, the demodulation and

filter circuits may be thought of as performing three func-

tions: (1) detecting the low frequency modulation on the

pulse train; (2) synchronously rectifying this modulation in

each of two channels; and (3) filtering the rectified signal to

produce dc signals proportional to the offset.

The model 874-64 is able to meet the specifications in all

areas except possibly acquisition range. However, such a large

acquisition range is not required operationally. The phase
shift at 5 Hz is well below the specified values. It was esti-

mated to be 0.2 degree, which is at the limit of what can be
measured.

C. M611er-Wedel Interface

It has already been mentioned that it was necessary to con-

struct an interface unit to permit the M611er-Wedel autocolli-

mator to be used as a replacement for the Kollmorgen 874.

The instrument as modified for this particular application had

two data modes at the RS-232 port: a normal mode using

2400 baud ASCII characters and a high-speed rate, 9600 baud
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absolute binary. It is the high-speed rate that must be pro-
cessed for control applications. The basic operation in the

interface unit consists of reading the digital output of the

M6iler-Wedel, applying zero-point and scale-factor corrections,

converting to analog voltages, and outputting the properly

scaled voltage for each axis. In addition the unit must test for

good data and close an acquisition relay when valid data is

being processed.

The interface unit is built around a 990/101M computer

based on Texas Instruments' TMS9900 16 bit microprocessor.

It has four kilobytes of RAM, four kilobytes of PROM, two

kilobytes of non-volatile CMOS memory (battery backup),

and two RS-232 ports. The D/A converters are memory

mapped I/O ports and are followed by gain stages to achieve

the required 64 V/degree sensitivity. Both the M611er-Wedel

and the interface unit operate from the 60 Hz line, but power

is switched by the 400 Hz line that operates the 874 autocolli-
mators. It was necessary to make a small modification to the

M611er-Wedel to make it power up in the high-speed data
mode. With these modifications, the M6ller-Wedel will resem-

ble the 874 in all operational aspects.

There are three programmed modes of operation for the

interface unit. They differ in the values taken for the scale

zero. The first program uses the factory calibrated zero. The
second takes the first value read and calls that "zero." The

third program uses the constants stored by the second program

for all subsequent measurements, and is the one used for the
normal control function.

In mounting the M611er-Wedel autocollimator on the an-

tenna the optical head would mount in place of the 874. The
electronics box would be mounted close to it on the IRS. The

interface unit would be on the floor of the master-equatorial

room and would connect to the junction box on the wall of
the room rather than to the one on the IRS.

Vl. Summary and Recommendations

A number of commercial autocollimators have been eval-

uated. Based on the assumption that modifications to the
intermediate reference structure would be minimal, no instru-

ments with analog output were judged satisfactory as a replace-

ment for the Kollmorgen 874. A digital instrument made by

M6ller-Wedel, after factory modification, showed sufficient

promise that an interface unit was designed and built. It has
not been tested on the antenna because other solutions devel-

oped in parallel offered promise of simpler solutions for the
Voyager Neptune encounter period.

For the Neptune encounter a two-step approach has been

taken to the upgrading of the Kollmorgen 874. The first step

seeks to improve the reliability without changing the basic

technology of the instrument. The changes include a new
illumination system, a new motor, and the replacement of

the AGC circuit with a manual gain control. These changes

are being implemented as instruments come in for routine

maintenance and recalibration. The second step involves the

more significant change of replacing the mechanical scanning

with a circular array detector. A prototype has been tested

at DSS-14, and an engineering model is now under construc-

tion. Following its testing the decision wilt be made concern-

ing the conversion of other units.

For the period after the Neptune encounter, careful con-

sideration should be given to digital-output instruments.

M611er-Wedel has under development a high-speed, single-axis

autocollimator with parallel digital output. It uses a high-
intensity LED and operates at a 400 Hz update rate. The eval-

uation of this instrument is strongly recommended.
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Table 1. Principal specifications for the autocollimator for the

70-meter antennas

Slope of the transfer curve (V/degree) 64

Linear range (arc seconds) ±300

Linearity (percent) ±10

Accuracy at null (arc seconds) ± 1

Acquisition range (arc minutes) ±23

Maximum working distance (meters) 2.44

RMS noise-equivalent angle (arc seconds) 0.5

Maximum phase shift 0-5 Hz (degrees) 5

Cross-coupling (percent) ±2

All-attitude sensitivity (peak to peak, arc seconds) 3
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A comparative analysis has been performed, using both the Geometrical Theory of

Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF

antenna gain performance and pointing corrections. The NASA/JPL 70-meter antenna

with its shaped surface was analyzed for gravity loading over the range of elevation

angles. Also analyzed were the effects of lateral and axial displacements of the subre-

flector. Significant differences were noted between the predictions of the two methods,

in the effect of subreflector displacements, and in the optimal subreflector positions to

focus a gravity-deformed main reflector. The results are of relevance to future design

procedure.

I. Introduction

Among a number of current trends in high performance

antenna design is the replacement of paraboloid main reflec-

tors and hyperboloid subreflectors with optimally shaped sur-

faces which provide uniform aperture illumination. Quantifi-

cation of various RF gain loss mechanisms, especially those

due to surface imperfections, is essential to understanding

where cost-effective improvements might be realized. The

traditional methods used for antenna gain and pointing analy-

sis have been based on the assumption of paraboloid main

reflectors and hyperboloid subreflectors. Newer methods

*Mr. Schredder, who is assigned on contract to the Ground Antenna

and Facilities Engineering Section, is an employee of Planning Re-

search Corporation, McLean, Virginia.

exist which deal with more general reflector shapes. One such

method is implemented in the JPL Geometric Theory of

Diffraction (GTD) program. This article compares gain and

pointing predictions derived from traditional methods and

GTD analysis under various conditions. The NASA/JPL

70-meter antenna, which has a shaped main reflector and a

shaped subreflector, was used as a test sample. The effect of

lateral and axial offsets of the subreflector was investigated

along with the effect of gravity deformations of the main

reflector with focusing of the subreflector.

II. Traditional Ray-Tracing Methods

For the analysis of gravity deformations of the main

reflector, the traditional and GTD methods use the same set

of nodal displacements, derived from a finite-element struc-
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tural model. These are the X, Y, and Z (axial) components of

symmetric unit-gravity-load deflections (ASsymmetric) and

antisymmetric unit-gravity-load deflections (ASantisymmetric).
The two sets of deflections are combined according to the

following equation:

AS = ASsymmetri c [sin (ELrig) - sin (EL)]

+ ASntisymmetri c [COS(ELrig) - cos (EL)]

whe re:

(1)

S=X,Y, orZ

to yield the deflections at any desired elevation angle (EL).

The rigging elevation angle (ELrig) was arbitrarily set at 45
degrees.

In ray-tracing analysis, the half-pathlength errors are then
fitted to a paraboloid by least squares, and the RMS of resid-

uals of the fit is computed [1]. The deformed antenna is

assumed to be perfectly focused. The RMS value is used in the

Ruze equation [2] to compute the gain loss as follows:

[ [4n(RMS)] 21_ = e expL-__ ]
(2)

where:

g"= efficiency

), = wavelength

The elevation pointing shift due to gravity-loading main

reflector and quadripod deflections is given by:

0 = 0s[sin (ELrig) - sin (EL)] + Oas [cos (ELrig) - COS(EL)]

(3)

where 0s is the pointing shift due to symmetrical gravity load-

ing and 0as is the pointing shift due to antisymmetric loading.

For the 70-m antenna, 0s = 0.0015 degree and Oas = 0.047

degree.

This equation is derived from the finite element model and

the best-fit paraboloid axis tilt. The fitting process also gives

the parameters of the best-fit paraboloid, including its focus.

The position of the subreflector vertex, the subreflector axis

tilt, and the feedhorn phase center shift, as obtained from the

whole antenna structure model, are combined with the main

reflector best-fit geometry. A subreflector focusing offset

table is generated which brings the virtual image of the feed

phase center into coincidence with the best fit main reflector

focus [3]. This is shown in Fig. 1. The pointing shift predicted

by Eq. (3) is added to the shift computed by Eq. (4) to derive
a predicted net shift for the focused antenna.

Gain loss resulting from subreflector offsets is computed

traditionally as follows. Data obtained from running the JPL

Radiation Program [4] allowed the equivalent RMS path-

length error per unit subreflector displacement in lateral and

axial directions to be expressed as functions of focal length to

diameter ratio. For the shaped 70-meter antenna, the approxi-

mating f/D ratio is taken to be 0.389, which gives an RMS

pathlength error of 0.0773 cm per centimeter of axial displace-

ment and 0.0185 cm per centimeter of lateral displacement.

These values are then used in the Ruze equation (Eq. [2] ).

Pointing shift as a function of subreflector lateral displace-

ment for a Cassegrain antenna is predicted by a simple geo-
metric argument, given in [5] :

where:

A y = lateral subreflector displacement

0 = pointing shift in radians

f = focal length

K = beam deviation factor

M = magnification factor

For the 70-m antenna, f = 2722.9 cm, M is estimated as 6.84,
and K is estimated as 0.82.

III. The GTD Method

The GTD program evolved from an electric field integration

program developed in 1978 and modified in 1983.1 The pro-

gram uses modified Jacobi polynomials to describe the radial

dependence of the surface currents induced by the fields

incident on the main reflector. The modified Jacobi poly-

nomials are an orthogonal set with desirable convergence

properties. The program uses two-dimensional Gauss integra-

1y. Rahmat-Samii, "Offset Parabolic Reflector Computer Program for
Analysis of Satellite Communications Antennas," JPL Publication
D-1203 (internal document), Jet Propulsion Laboratory, Pasadena,
California, December 1983.
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tion to determine the coefficients for the eigenfunctions com-

posed of the products of modified Jacobi polynomials and sine
and cosine functions of the azimuth angle. These coefficients

are then used in another series to compute the far-field electric

field pattern.

The program described in JPL Publication D-12031 requires

that the user supply subroutines to compute the following: a

description of the main reflector surface that includes axial

distance (Z) as a function of radius (r) and azimuth angle (¢),

the first derivatives _z/_r, _'z/a¢, and the fields incident on
the main reflector.

The GTD program represents the deformed or undeformed
main reflector as a series of modified Jacobi polynomials

added to a base paraboloid:

Z=EE(Cnm COSr/_b+Dnm sinn_) F n +ZO+--4f
\ max/?1 m

(s)

where:

¢ = azimuth angle

r = radius

Rma x = the radius of the main reflector

f = focal length of base paraboloid

z 0 = arbitrary datum

The program computes two sets of electric and magnetic
fields incident on the main reflector: a pair of fields reflected

from the subreflector and a pair of fields diffracted from the

subreflector. The reflected fields are computed using geomet-

rical optics (GO), while the diffraction field is computed

using the Geometrical Theory of Diffraction (GTD). The

program in this form is documented in JPL Publication
D-2583. 2

IV. GTD Analysis of the 70-Meter Antenna

In this investigation, a number of modifications were made

to the GTD program to accommodate the 70-meter antenna

analysis. An additional data block was generated to provide

storage for Jacobi polynomial coefficients for both the shaped
subreflector and the deformed main reflector (previously, the

2T. Veruttipong, et al., "Dual Shaped and Conic GTD/Jacobi-Bessel
Analysis Programs," JPL Publication D-2583 (internal document),
Jet Propulsion Laboratory, Pasadena, California, July 30, 1985.

program could analyze one or the other, but not both). Also,
a change was made in the sequence in which Jacobi poly-

nomial values were computed and stored and provided a major

increase in execution speed.

Analysis of a gravity-deformed reflector involves the

following five steps:

(1) The computation of node deflections at a given eleva-

tion angle is the same as in the conventional analysis,
and the deflections (u, v, w) are added to the node

coordinates (x, y, z) for an undeflected reflector to
arrive at a set of deflected nodes. The 70-meter model

that was used has 764 nodes for a half-model.

(2) A grid of axial positions z(r, ¢) at evenly spaced
values of radius (r) and azimuth angle (¢) is generated.

The radius varies from zero at the center to Rmax, the
radius of the main reflector, and the azimuth angle

varies from 0 to 360 degrees. To generate the grid, a

set of nine neighboring nodes around each grid point is
used, as shown in Fig. 2. First, three interpolating

parabolas along points 1-2-3, 4-5-6, and 7-8-9 are com-

puted. These parabolas are evaluated at the grid point
radius to give three values of azimuth angle and Z at
this radius.-Then a fourth interpolating parabola is

computed giving Z as a function of angle. This parabola
is evaluated at the grid point angle to yield the interpo-

lated Z value. Typical grid spacing was 416 intervals
in radius and 256 intervals in angle.

(3) The following equation is integrated by standard

numerical methods to generate the Jacobi polynomial

coefficients (Cnm, Dnm) which describe the reflector
surface:

- F'f'
c 2"do do c°snq_Fmn(S)sd¢ds

_SF F '
Dnm 2_rJo .1o sinnCFmn(s) sdcds

(6)

whe re:

S = r/Rma x

en = 1 if n = 0

en = 2 if n _ 0

To represent the gravity-deformed main reflector

shapes, a 7 X 25 set of coefficients was used (n = 0,
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1 .... , 6; m = 0, 1..... 24), which can model 24

ripples in radius and 6 cycles in azimuth angle.

(4) To check the accuracy of the Jacobi polynomial fit,
the reflector surface is reconstructed from the Jacobi

polynomial representation (at the node radii and

angles). To do this, the coefficients determined in

step 3 are entered into Eq. (5). The computed Z

values are compared with the Z values derived from the
finite element model. For gravity deformations, RMS

differences of 0.075 mm (0.003 inch) to 0.175 mm

(0.005 inch) were found. These differences were much

smaller than the gravity deformations.

(5) The coefficients determined in step 3 are also used to

represent the deformed main reflector in the GTD

program.

Figure 3 shows the sequence of computations of both the
traditional and GTD methods.

The Jacobi polynomial representation of the undeflected

main reflector consists of a set of 15 coefficients (n = 0;

m = 0, 1 ..... 14) of polynomials in radius, as there is no

angular dependence of the ideal reflector surface. The
first 15 Jacobi polynomials were sufficient to describe the

deviation of the radial profile from a parabola. This represen-

tation of the "perfect" reflector was used in two ways: (1) to

generate the undeflected node positions for the gravity defor-

mation analysis; and (2) to study the effects of subreflector

displacements.

Among the input variables to the GTD program are the
subreflector and feed positions; the orientations of the main
reflector, subreflector, and feed coordinate systems; and the

RF wavelength. The frequency used in this study was 8.45

GHz, which has a wavelength of 35.48 mm (1.397 in.). The

study was performed with the subreflector pointed at the

X-band horn, as shown in Figs. 4 and 5. The geometry is
shown in more detail in JPL Publication D-1843. 3

V. Results

The following results are compared between GTD and

traditional analysis:

aA. G. Cha and W. A. Imbriale, "Computer Programs for the Synthesis
and Interpolation of 70-m Antenna Reflector Surfaces," JPL Publica-
tion D-1843 (internal document), Jet Propulsion Laboratory, Pasa-
dena, California, November 1984.

(1) Gain loss resulting from subreflector lateral and axial

offsets, and pointing shift due to lateral offsets.

(2) Gain loss and pointing shift as functions of elevation

angle with the subreflector focused.

(3) Prediction of best subreflector offsets to focus a

gravity-deformed antenna as a function of elevation

angle.

It should be noted that the subreflector offsets are given in

units of the wavelength at 8.45 GHz.

Figure 6 shows gain loss for a perfect main reflector as a

function of axial subreflector displacement predicted by the

two methods. For positive axial displacements (away from the

main reflector) the agreement is very close, but the difference
between the two curves is sizable for negative displacements.

Table 1 shows the gain loss predicted by the two methods
for lateral subreflector displacements, while Table 2 shows the

pointing shift predicted. There is a large difference in the pre-

dicted gain loss; however, both methods predict a square-law
dependence of gain loss on lateral subreflector displacement.

Also, the pointing shift predicted is somewhat different. Ray-

tracing methods predict a shift of 0.01472 degree per centi-
meter of lateral displacement, while GTD predicts 0.01346

degree per centimeter of lateral displacement.

Figures 7 and 8 show the predicted gain loss and pointing

shift, respectively, of the 70-meter antenna with focused sub-

reflector as functions of elevation angle. For each figure.

three sets of curves were generated: (1) predictions from tradi-
tional methods; (2) predictions from GTD analysis using the
subreflector focusing tables furnished by traditional methods;

and (3) predictions from GTD analysis with subreflector posi-

tion varied to maximize the predicted gain. If the gain is maxi-

mized by varying the subreflector position, the gain loss pre-

dictions of GTD analysis agree with those of ray-tracing analy-
sis to within a few hundredths of a decibel. This is considered

good agreement.

Figure 9 contains four curves. The two broken lines repre-

sent the subreflector offsets required to bring the virtual

image of the feed phase center into coincidence with the focus

of the best-fit paraboloid, while the two solid lines represent

the results of searching for the subreflector positions which

maximize the gain predicted by GTD analysis. Note that in

both cases, the offsets are measured from the original position

of the subreflector, in the main reflector coordinate system.

The agreement appears to be good in Z and poor in Y.



Vl. Conclusion

The predictions of traditional ray tracing and GTD analysis
have been compared in this article for subreflector displace-

ments and for the focused, gravity-deformed 70-meter an-

tenna. There is a significant difference in the gain loss pre-

dicted by the two methods for axial subreflector displacement,

and a large difference in the gain loss predicted for lateral

displacement. The pointing shift predicted for lateral dis-

placement is also somewhat different.

For the focused gravity-deformed antenna, the gain loss

predictions of the two methods show good agreement if the

subreflector position is varied to maximize the gain. It is

noteworthy that the pointing shift predictions show close

agreement between ray tracing and GTD analysis if the tradi-

tional subreflector focusing method is used. However, if the

traditional method of determining subreflector focusing off-

sets is used, the agreement for gain loss predictions is poor.

This study shows significant differences between the subre-

flector offsets that align the virtual image of the feed phase

center with the best-fit paraboloid focus and the offsets which

maximize the gain. Past studies have indicated that aligning

the main focus and feed phase center will yield good results in

maximizing the gain of paraboloid-hyperboloid systems. The

present results indicate that methods which compute the elec-

tric and magnetic fields are required to give good results when

dealing with shaped surfaces.
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Table 1. Comparison of predictions of gain ion caused by
subreflector lateral displacements

Lateral Gain loss, dB Gain loss, dB

displacement (traditional) (GTD)

_,* in +Y direction 0.23 0.55

in + Y direction 0.06 0.14

h in -Y direction - 0.56

h in +X direction - 0.56

*h = 3.548 cm (1.397 in.) at 8.45 GHz.

Table 2. Comparison of predictions of pointing shift caused by
subreflector lateral displacements

Lateral Pointing shift Pointing shift
displacement (traditional), deg (GTD), deg

;_* in +Y direction 0.05228 0.04776

h.
-_ m +Y direction - 0.02388

;_in -Y direction - 0.04775

h in +X direction - 0.04775

*h = 3.548 cm (1.397 irL) at 8.45 GHz.
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TDA Mission Support and DSN Operations

The Technical Facilities Controller is a microprocessor-based energy management sys-

tem that is to be implemented in the Deep Space Network facilities. This system is used

in conjunction with facilities equipment at each of the complexes in the operation and

maintenance of air-conditioning equipment, power generation equipment, power distri-

bution equipment, and other primary facilities equipment. The implementation of the

Technical Facilities Controller has been completed at the Goldstone Deep Space Commu-

nications Complex and is now operational. This article describes the installation com-

pleted at the Goldstone Complex and evaluates the utilization of the Technical Facilities

Controller. The findings will be used in the decision to implement a similar system at the

overseas complexes at Canberra, Australia, and Madrid, Spain.

I. Background

The Deep Space Network (DSN) is operated and managed

for NASA by JPL and is composed of three Deep Space Com-

munications Complexes (DSCCs) located at Goldstone, Califor-

nia; Madrid, Spain; and Canberra, Australia. The DSN serves as

the primary facility for communication with deep space mis-

sions such as Voyager 1 and 2, the Pioneer series, and the soon

to be launched Galileo spacecraft.

The Goldstone Complex consists of four Deep Space Sta-

tions (DSSs) extending over a sixteen mile stretch of road in

the Mojave Desert. It includes 34-m and 70-m class antennas

and about one hundred antenna support buildings ranging in

function from control room buildings and generator power

plant buildings to administrative buildings that support approxi-

mately 200 employees.

The Technical Facilities Controller (TFC) was initially con-

ceived circa 1975 as a Utility Control System (UCS) when a

distributed process controller was developed to monitor and

control facilities equipment for energy management. The

facilities equipment includes Heating, Ventilating, and Air

Conditioning (HVAC), lighting, power generation, power dis-

tribution, and site protection equipment.

The initial prototype system was demonstrated at the Venus

station (DSS-13) at Goldstone using a scaled-down version of

the TFC called "Pathfinder." Pathfinder was envisioned to
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monitor and control room temperatures and power. Therefore,

it would control energy loads such as HVAC equipment and

lighting. The results of this prototype showed that a distrib-

uted process controller should be implemented as a useful

facilities energy management tool. The energy management

features were augmented by many additional advantages such

as improving facility performance, reporting capabilities, and

instrumentation monitoring.

II. Functional Requirements

The functional requirements for the TFC centered on many

operational needs for upgrading facility performance in unat-

tended operation, safety, maintainability, and availability. The

following is a fundamental list of functional requirements for
• the TFC:

(1) The TFC shall be capable of receiving input data from

different sources such as digital sensors (switch clo-
sures), analog sensors (4-20 mA signal), real time

clock information, and electrical power meters (with

pulsers).

(2) The TFC shall be capable of sending digital on/off load

control commands to any TFC connected equipment.

(3) The TFC shall be capable of accepting input sensor

data and sending output load commands at multiple

locations distributed throughout the Complex (i.e.,

serve as a distributed process control and monitor).

(4) The TFC shall be capable of handling single "event
control." An event control is defined as a specific set

of input sensor data used to trigger a command to set a

specific output load configuration.

(5) The TFC shall be capable of executing energy manage-

ment control of specific loads. This control consists of

peak demand load shedding during periods of high and

costly energy usage, and exercise time-of-day control.

(6) The TFC shall be capable of archiving sensor data and

operational activity reports (on a hard disk or magnetic
tape) for future access and analysis by engineers and

management.

(7) The TFC shall be capable of collecting sensor data,

processing it, and generating Trend Reports for future

access and analysis.

(8) The TFC shall be capable of reporting alarms (i.e., fire,

power outage, equipment malfunctions, equipment

exceeding specific operational ranges, etc.) both at

the central point (via printer and terminal) and at each

Deep Space Station (via printer and terminal).

(9) The TFC shall be capable of sending critical alarm

status reports to a secondary destination if the primary
destination is not available.

(10) The TFC shall be capable of self-diagnostics and test-

ing to check for hardware failures and communications

link breakdowns. In the event of equipment failure, the

TFC will report such to the operator.

(11) The TFC shall be capable of operating in a fail-safe

configuration. This feature will allow the users to

request controlled loads to be set into a specific con-

figuration (on or off) when TFC equipment fails.

The detailed design and fabrication for the TFC at Gold-

stone was bid by approximately eight different commercial
manufacturers. The contract was awarded to AT&T Guilford

Center in Greensboro, North Carolina, which satisfied all of
the requirements using a microprocessor-based commercial

off-the-shelf system called Affirm III.

III. System Architecture

The TFC system consists of four basic building blocks that
can be configured to match specific user needs. The four

blocks are shown in Fig. 1 and are described in the following
paragraphs:

A. CentralControl Unit (CCU)

B. LocalControlUnit (LCU)

C. Sensor Control and Network Node (SCANN)

D. Terminals and Printers

A. Central Control Unit (CCU)

The CCU, shown in Fig. 2, is an AT&T Applications Proces-

sor with an 8086 CPU, 512k of memory, and a 40 Mbyte hard

disk. The current configuration of the CCU allows for commu-

nication over 12 Electronic Industries Association (EIA)stan-

dard RS232 ports and 18 Standard Serial Interface (SSI) stan-
dard RS232 ports. The EIA ports run at 1200 bps and are used

to communicate over standard phone lines to the LCU's remote

printers and remote terminals. The SSI ports operate at

19.2 kbps and are used as the local primary interface to the

System Administrator in the form of a System Printer and

Terminal and an Alarm Printer and Terminal. The CCU oper-

ates using UNIX 3.0 with the applications program (Auto-

mated Building Management [ABM]) developed by Belt

Laboratories, New Jersey [1]. This package serves as the pri-

mary user interface and database management area. The ABM

package is a menu driven system for editing all system data-

bases and providing energy management features. These data-
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bases include installation information, sensor descriptions,

event descriptions, energy management data, and controlled
load definitions. All information is centralized at the CCU for

access by the System Administrator. However, it does not

execute any commands or make decisions on energy manage-

ment. These energy management tasks are left to the SCANNs
and LCUs. After all databases are edited, they are downloaded

to the LCUs and SCANNs for ABM operations. With this

method of operation, the user can manage system databases
and historical data without interrupting ABM operations.

B. Local Control Unit (LCU)

The LCU, as shown in Fig. 3, serves as the workhorse of the

system architecture. All decision-making logic resides at the
LCU and is communicated to SCANNs as required. Once data-

base information is downloaded from the CCU it is the respon-

sibility of the LCU to provide control and monitor informa-
tion at the SCANNs under its direct command. Likewise, it is

the responsibility of the LCU to report sensor status changes
and diagnostic information back to the CCU at regular inter-
vals. The LCU communicates with the CCU over two serial

links: the Alarm Link and the Interactive Link. The Alarm

Link is dedicated to reporting critical alarm information back

to the CCU. The Interactive Link is provided for all non-critical
communication with the CCU. This communication includes

database downloading and diagnostic information reporting.

At a relatively quiet time during ABM operation (for example,

2:00 AM) the CCU reloads the LCU with databases and the
LCU in turn transmits archive data and activity reports back to

the CCU for future access by the user. A second function of

the LCU is to provide locations to tie binary sensors, and load

controls directly into the LCU, without requiring a SCANN.

Each LCU is capable of directly scanning 256 binary sensors,

directly controlling 96 loads, and communicating with up to
8 SCANN units.

C. Sensor Control and Network Node (SCANN)

The SCANN, as shown in Fig. 4, is the primary front end

of the system architecture. It consists of a power supply, a

maintenance panel, and a card cage that can be configured for

various applications. The card cage has 9 slots that can handle

CPU, Communications, Binary Input, Binary Output, Analog

Input, and Power Meter Input circuit cards. The SCANN can

be configured as required with any combination of circuit

cards (CPU and communications cards are required). These
SCANNs send status messages to the Local Control Unit (LCU)

whenever a change in state of a sensor is detected. If no change

of state is detected, the LCU polls the SCANN for a status

message at one minute intervals. These SCANNs can be located
as far as 300 m from an LCU without requiring a modem or

other line conditioning.

D. Terminals and Printers

The printers and terminals are the primary user interface.
There are basically two types of interfaces: EIA and SSI. The

EIA terminals and printers serve as remote communications

ports to locations requiring a modem to communicate with the

CCU. These printers and terminals serve a dual purpose: to

provide remote access to the CCU and to allow direct commu-
nication with the local LCU and its associated SCANNs. In a

normal configuration, these printers and terminals interface

with the CCU for the user to request reports and system sta-

tus. If the CCU fails or "goes down," the system can be recon-

figured for the LCUs to send critical information to the local

printer and terminal instead of the CCU. This is called the
"Degrade Mode" of operation that serves as a suitable backup

when equipment fails or communications links are broken.

Printers and terminals of the second type, SSIs, are in direct

interface to the CCU. They reside within 1500 m of the CCU

and can communicate over standard phone lines. The Alarm

Terminal serves as the primary list device for all critical system

sensors and alarm points. The Alarm Printer serves as the pri-

mary hardcopy listing device for system alarm activity. The

System Administrator's Terminal is the primary location for
database editing and requests for reports. The System Printer

is a high speed printer that acts as the primary list device for
the generation of reports requested by any user of the system.

The four TFC building blocks described above make the

selected TFC system flexible, expandable, and readily config-

ured into JPL's specific applications.

IV. System Description

The current TFC configuration is shown in Fig. 5. This con-

figuration consists of 26 SCANNs attached to 4 LCUs com-
municating with one CCU. Also interfacing with the CCU are

one System Administrator's Terminal, one Alarm Terminal,

one System Printer, one Alarm Printer, a Remote Printer and

Terminal at the Venus station (DSS 13), and a Remote Printer
and Terminal at the Mars station (DSS 14). One LCU is located
at each station with two located at the Mars station because of

its primary activity. The SCANNs are distributed throughout

the Complex at all locations where facilities data is currently

required or will be required in the future. The Alarm Terminal
is currently located at the Goldstone Communications Facility

(GCF-10), which is the only facility that is attended 24 hours

a day and 7 days a week. At this terminal, all Complex alarms

are reported and acknowledged, and appropriate action taken.
The Alarm Printer is located at the facility's Duty Electrician

Shop to enable the resident electrician to watch the status of
critical alarms. The System Printer and System Administra-

tor's Terminals are located in the System Administrator's
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office. From this location, tight control is maintained on

all database editing and usage of the system. Additionally, the

TFC is closely monitored for erroneous activity, hardware

failures, and software difficulties. An extensive error log and

activity report allows access to this information The current

configuration, therefore, is easily interfaced and readily acces-

sible to all users who require system data.

Since the central core of TFC equipment was installed in

August 1986, many different subsystems have been interfaced
to the TFC. Table 1 shows the current instrumentation that

interfaces to the TFC.

The primary use of the TFC is in the monitoring of critical

facilities and operational equipment. At the present time, the

TFC has little control activity. Most equipment at the Com-

plex could not be controlled on an energy conservation basis

due to the continuous demand for equipment usage.

V. Performance Analysis

A thorough analysis was completed on the functional per-

formance of the TFC. This analysis consisted of a three phase
collection of operational data.

The first phase of data collection consisted of developing a

complete list of historical activity on the system over a period

of one and one-half months between July 16, 1987, and Sep-

tember 1, 1987. The activity report consisted of alarm reports,

analog sensor trend data, and system diagnostic activities. This

data was tabulated and cross-checked with the log books from

the Complex Operators. The log books recorded the day and

time of the TFC activity, the action executed as a result of the

activity, and the solution to the problem that caused the TFC

alarm. This information is useful in evaluating the utilization
of the TFC as a facilities controller device. The second level of

data collection consisted of interviewing the Complex Opera-

tors, the System Administrator, and facilities personnel as to

their suggestions and recommendations on the utilization of

the system, this information addressed aspects of the TFC

that include operability, flexibility, and design suggestions in

order to improve the system utilization.

The third level of data collection consisted of inspecting a

14 month interval of system error logs. This gave an accurate

measure of the reliability and availability of the system in its

current configuration.

VI. Analysis Results

The first phase of evaluation, the activity report and log,
concluded with the following results about the TFC:

(1) Ninety-one TFC alarms were false due to people work-
ing on the system in alarm.

(2) Fifty-one TFC alarms were serious alarms that required
immediate response by maintenance technicians.

(3) Eiglaty-two TFC alarms were "status messages" to pro-

vide useful information to facilities personnel.

As a subset of this group, there were 126 alarms due to faulty

equipment generating excessive alarms. The equipment often

reported error conditions more than one time.

It is noted that 41 percent of the alarms were due to people

working on the equipment in alarm. This is one function of

the TFC that the facilities personnel found very useful. The

TFC provides a means to insure that technicians do not bring

down a critical piece of equipment at an improper time. There

were multiple situations during the 1.5 month evaluation

where technicians were executing preventive maintenance not

knowing that they were jeopardizing the proper operation of

mission critical equipment. The TFC is useful in predicting
these problems before they cause an operational failure.

The second phase of evaluation, personnel interviews, re-

suited in the following statement: The TFC is a useful facilities

tool in the maintenance and troubleshooting of facilities and

operational equipment. The data collection capability has been

found to be useful in fine-tuning HVAC controllers. The capa-

bility of checking the status of a particular system from a

remote location has been acknowledged as a useful feature.

The ABM software package was found to be easy to operate
with its menu driven screens. The System Administrator found

that it was a simple process to add monitor instrumentation to
any node of the system.

Suggested improvements to the system were provided by

operations personnel as follows:

(1) Include color graphics screen design tools to improve

the operability of the monitoring capabilities.

(2) Provide a backup power source for the SCANNs in case

of commercial power outage.

(3) Improve local diagnostic capabilities at the LCUs.

(4) Provide screen graphing capabilities for trend reports.

The third phase of evaluation showed that the TFC, once

installed and operational, does meet the availability require-

ments set forth in the Functional Requirements Document
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(FRD 824-4).1 The estimated availability of the TFC over

the 15 month evaluation period was shown to be 99.9699 per-

cent. The implementation phase was challenging, and the CCU,

as initially received from AT&T, was unreliable. However,

since the problem was traced to a faulty hard disk and the ele-

ment replaced, the system has been very reliable with few
noticeable hindrances.

One important feature of the TFC is its extensive remote

diagnostics capabilities. All operations at the Complex can be

IMark IVA Technical Facilities Subsystem (1982 to 1986), JPL DSCC
Subsystem Functional Requirements Document 824-4, Rev. C, Jet
Propulsion Laboratory, Pasadena, California, April 1, 1984.

executed from a remote location on dial-up phone lines. This
allows the Cognizant Design Engineer to assist in trouble-

shooting and survey activity on the system.

VII. Summary

A Technical Facilities Controller was designed and installed

at the Goldstone Deep Space Communications Complex for

the monitoring and controlling of facilities equipment. In the

15 month post-installation period, the TFC shows its many
advantages in the operation and maintenance of facilities

equipment at the Complex. As a result, it is recommended that

a TFC be implemented at the overseas DSN Complexes at
Canberra and Madrid.
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Table 1. Current instrumentation allocation

Digital Analog Load Power
Subsystem sensor sensor control meter

Fire detection 87 0 0 0

HVAC 116 18 2 0

Water 0 8 0 0

distribution

Power 12 0 2 4

Critical 20 0 1 0

operational

alarms

TFC self- 32 0 2 0

diagnostics

Totals 267 26 7 4
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This article describes three data controllers developed for the SETI project. Two are

used primarily for recording and playback of SETI data from the Radio Science Surveil-

lance System (RSSS). The third is used as a SEFI station controller for DSS 13.

I. Introduction

This article describes the SETI Data Controllers. There are

three units, all based on the same hardware design. Variations
in the software allow them to be used for somewhat different

purposes.

II. Functional Description

The basic function of the data controllers is to record real-

time data on floppy disks and to read it back. The capacity of

a single disk is 512,512 bytes. In addition, the unit located

in the DSS 13 control room (DR-2) must have the capabil-

ity of controlling the station by sending sequences of com-

mands through the station controller to the various subsystem
controllers.

There are three data controller units, designated DR-l,

DR-2, and DR-3. DR-1 and DR-3 are similar (ROM-based)

units (except that DR-1 has four disk drives instead of two),

but they are used in slightly different ways. DR-1 (located in

the RFI van at DSS 13) is used for recording data from the

Radio Science Surveillance System (RSSS). DR-3 (located at

JPL) is used for playback of data and recording of sequence-
of-events (SOE) files to be used at DSS 13. DR-2 (located in

the DSS 13 control room) has additional capabi]ities for sta-

tion monitoring and control.

Referring to Fig. 1, DR-1 collects real-time data from the

RSSS controller and responds to data controller commands,

starting with the character "#" embedded in the data stream.
Note that all characters in the data stream are recorded auto-

matically (except for command characters), provided that a
write enable command has been received. DR-3 (Fig. 3) uti-

lizes the data collection port to input command (SOE) files
from the radio science VAX as data. This is because DR-3 is

a ROM-based system and the command files cannot be written

directly in CP/M format. DR-3 also responds to "#" com-
mands. Real-time data is assembled in blocks of 256 bytes and

written to a data disk in a sequential format to allow maxi-

mum storage capability on the floppy disk (see Table 1). Indi-
vidual disk sectors contain a checksum which is transparent

to the user. The data blocks may be read back a block at a

time and will be preceded by a block identification number

and followed by a checksum for transmission integrity.

An important feature unique to DR-1 is a power failure

protection system incorporating a power fail interrupt and a
non-volatile core memory. The controller will not lose data

upon the occurrence of a power failure. In addition, when

power is restored, the controller returns to its previous status

after inserting a power failure message and count in the data
stream. Should a complete restart and memory clear be de-

sired, the operator must press the TEST button within 1 sec-

ond after restoring power.
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DR-2 (Fig. 2) is a RAM-disk-based system capable of sup-

porting both the CP/M and ISIS operating systems. It has the

capability of creating, reading, writing, and editing command

(SOE) files to control the station through the subsystem con-

trollers installed for the unattended station development.

Higher level command capability than that available with the

existing station controller is provided to allow automatic

repeat of a single command at specified time intervals and

looping of command sequences. In addition, a command may

be preceded by a time parameter, which will cause the com-
mand to not be executed until the indicated time. In normal

operation, a sequence of commands is stored in a command

buffer. The buffer may be loaded from a disk file, from the

DSS 13 VAX via the user port, or from the local terminal.

III. Hardware Overview

The data controllers are microprocessors assembled from

standard Multibus I modules based on the 8080 CPU. They are

housed in individual seven-slot chassis with internal power sup-

plies. Each controller has a dual floppy disk drive using Shu-

gart 801-R drives, housed in a separate chassis, and operating
in the double density mode.

DR-1 and DR-3 are ROM-based systems using the Intel

SBC 80-20/4 single board computer. The program is contained
on board in 2716 PROMs. A Zendex ZX-200A disk controller

is used to control the disk drives. A 16-kbyte RAM card is

provided to allow the disk controller to operate in DMA mode.

The 80-20/4 contains a serial port (designated channel A) that

is used for sending and receiving data. A serial port module has

been added to DR-1 to allow use of a monitor terminal, modem,

and printer.

DR-2 contains 64 kbytes of RAM and is a RAM disk-based

system. The program must be loaded from disk after booting

the CP/M operating system. The National BLC 80/204 single

board computer is used as the CPU. This card allows more
flexibility in the use of an on-board monitor ROM whose con-

tents can be moved to high RAM and then shadowed by a soft-

ware command to allow use of standard CP/M or ISIS operat-

ing systems. A BLC-534 communications expansion module
provides four additional serial ports.

IV. Software Overview

The software for all controllers is written in the PL/M-80

language, assembled, linked, and located under the ISIS oper-

ating system. The load modules are copied to a CP/M disk

which can be loaded under the CP/M operating system for
DR-2 or burned in PROM for DR-1 and DR-3. Other utilities

such as editors can be loaded to facilitate modification or

creation of command files. The software for all three control-

lers was developed in DR-2. The principles of top-down struc-

tured programming were followed.

V. Command Descriptions

Except for loops, all commands are processed in sequence,
i.e., they are not sorted or reordered. Table 2 is a list of allow-

able commands from the various ports. R/T commands are

processed immediately. Command buffer commands are pro-

cessed immediately if not preceded by a time parameter. If

preceded by a time parameter, the command is processed as

soon as the following condition exists:

Station Time t> Command Time

Note that a timed command or a delay command may hold up

the execution of the next command, even if it is in the imme-
diate mode.

A. Subsystem Commands

The subsystem commands are explained in the "Unattended
Station Controller Operator's Handbook."

B. Data Controller "#" Commands

Data Controller commands all contain six bytes and have

the form _xxx"CR/LF."

#IN0 Format disk in drive 0 as a data disk. Set current

drive to 0.

#IN1 Format disk in drive 1 as a data disk. Set current

drive to 1.

#IN2 Format disk in drive 2 as a data disk. Set current
drive to 2.

#1N3 Format disk in drive 3 as a data disk. Set current
drive to 3.

#INA Format disks in all four drives (DR-1 only), start-

ing with drive 0 and continuing until encounter-

ing an empty drive.

RDA Read entire data file to printer port, starting with
drive 0 and switching drives until no disk is found

or a hex E5 character is found. The output does
not include a blocl_ I'D or checksum.

#BL0 Set the block pointer for drive 0 to the value

specified in the next four ASCII characters. The

value must be in the range 0001-2002 and must

contain exactly four characters. Set the current
drive to 0.

#BL1 Set the block pointer and current drive for drive 1.
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#BL2

#BL3

#RD0

#RD 1

#RD2

#RD3

_OF

#RST

Set the block pointer and current drive for drive 2.

Set the block pointer and current drive for drive 3.

Set the current drive to 0. Read block from cur-

rent drive and increment block pointer by 1. The

pointer wraps around from 2002 to 0001. If the

pointer wraps around, the current drive switches
to 1.

Set the current drive to 1. Read block from cur-

rent drive and increment block pointer. If the

pointer wraps around, the current drive switches
to 2.

Set the current drive to 2. Read block from cur-

rent drive and increment block pointer. If the

pointer wraps around, the current drive switches
to 3.

Set the current drive to 3. Read block from cur-

rent drive and increment block pointer. If the

pointer wraps around, the current drive switches
to 0.

Fill any space in the current data block with hex
E5 characters and write it to the current drive.

Increment the block pointer as done in the
#RD0 and #RD1 commands.

Reset the data controller program and memory
to the initial condition after boot or load.

#STR Return

#WE0 Enable

#WEI Enable

#WE2 Enable

#WE3 Enable

#WD0 Disable

#WD1 Disable

#WD2 Disable

4faD3 Disable

#PTA Print all

data controller status.

drive 0 to allow write operations.

drive I to allow write operations.

drive 2 to allow write operations.

drive 3 to allow write operations.

drive 0 write and format operations.

drive 1 write and format operations.

drive 2 write and format operations.

drive 3 write and format operations.

data in RDA format.

C. DR-2 Control Commands

START Begin processing command buffer (run

mode).

STOP Stop processing command buffer.

DISPLAY [n] Display 24 lines from line n of command
buffer. Move command line pointer to

186

DELETE In]

INSERT

ENDLOOP

DELAY n

HELP [n]

LOAD file

SAVE file

RPTn S

TOFF T

DATON

DATOFF

STAIUS

CPM2DATfile

DAT2CPM

line n. If n is omitted, it displays from cur-
rent command line.

Delete n lines in command buffer from

the current pointer. If n is omitted, one
line is deleted.

Insert lines before cursor until ESC

character.

Terminate INSERT.

Repeat from here to ENDLOOP n times.

Nesting is not permitted. May not follow
an RPTn command.

Signifies end of loop.

Wait n seconds before processing next
command.

Help menus.

Load command file from CP/M disk.

Prompt for correct disk. The maximum

file size is 32 kbytes. Prompt for correct

disk type.

Write command file to disk. Not permitted

in run mode. Prompt for correct disk type.

Repeat next command at interval S (sec-

onds). The maximum allowable is 65535.

The command may be canceled with RPTn

0 (n = 0, 1, ..., 9). Nesting is not allowed
for the same n.

Add a positive time offset T to all com-

mand times and data times as they are

processed until stop command. T is entered

in day/hour/minute/second format or the
character @ for current station time. The

day result is not corrected for a value in

excess of a year. The day total and carry

may exceed 365. The command in the

buffer is not changed, but the disk data

and terminal display include the offset.

Start writing data to disk.

Stop writing data to disk.

Report the current command buffer status.

Copy a CP/M file from drive 0 to an empty

data disk on drive 1, then execute an auto-
matic #EOF.

Copy a data disk on drive 0 to CP/M disk

on drive 1. The file will be broken up into



32,768 byte CP/M files or at the first hex
E5 character. The file name will be taken

from characters 2 through 9 of the first

data block, with the file extension as-

signed numerically starting with 001. If the

CP/M disk does not contain enough room

Y

N

for the next file, a prompt is issued for an-
other disk on drive 1.

Affirmative response to a query.

Negative response to a query.
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Table 1. Data block format

Byte Contents

1-4

5-260

261-262

Block identification number-must be in the range 0001-2002 and

contain only ASCII numerals

256 bytes of ASCII data containing only printable ASCII characters

Checksum formatted as 2 hex ASCII bytes (high-order first)*

*The checksum is computed by performing an "exclusive OR" operation over the first 260 bytes of

the block. The resultant byte is split into two hex ASCII digits. For example, a checksum of 91

(hex 5B) results in the ASCII characters "5" and "B" for characters 261 and 262, respectively.

Table 2. Allowable commands

Channel Channel Channel Command
Command

A E F buffer

#1Nn

#INA

#RDA

#BLn

#RDn

#EOF

#RST

#STR

#WEn

#WDn

#PTA

START

STOP

DISPLAY [N]

DELETE [N]
INSERT

"ESC" (Hex 1B)

LOOP N

ENDLOOP

DELAY N

HELP [N]

LOAD file

SAVE file

RPT[NI S

TOFF T

DATON

DATOFF

STATUS

CPM2DAT file

DAT2CPM

UON

UOFF

Y

N

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X

X X

X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

n=0,1,2,3.
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The application of order statistics to signal detection is becoming an increasingly active

area of research. This is due to the inherent robustness of rank estimators in the presence

of large outliers that wouM significantly degrade more conventional mean-level-based

detection systems. Zn this article, a detection strategy is presented in which the threshold

estimate is obtained using order statistics. The performance of this algorithm in the pres-

ence of simulated interference and broadband noise is evaluated. In this way, the robust-

ness of the proposed strategy in the presence of the interference can be fully assessed as a

function of the interference, noise, and detector parameters.

I. Introduction

Development of a two million channel, FFT-based narrow-

band detection processor is currently under way at JPL for

use in various applications of the Deep Space Network [1],

[2]. It will also serve as a prototype for the Search for Extra-

terrestrial Intelligence (SETI) Sky Survey Processor [3]. The

system is being designed to process contiguous spectra at a

throughput rate of 40 MHz. The system output consists of

detected spectral intervals. Each interval is composed of a run

of one or more contiguous spectral bins for which the asso-

ciated power levels all exceed the system threshold. The

average power level, width, and location of each detected spec-

tral interval are computed and passed along to the system

computer which performs the final signal and interference

assessment.

The key parameter in this system is the threshold level. For

effective system performance, it is desirable that the threshold

be adaptive to accommodate a typically time varying back-

ground (thermal) noise level, and that it be as insensitive as
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possible to the presence of both narrowband signal and inter-

ference components that lie within the threshold estimation

window. Finally, it is desired that the threshold level be stable,

i.e., that it exhibit a small variance. Toward these ends, we
have considered an order-statistic-based threshold estimation

scheme wherein the system threshold is a constant times a
linear combination of successive nth order statistics computed

from the power spectral data out of the FFT (see Section II).

The scaling constant controls the false alarm rate.

The analysis and application of order statistics in general

has become an important area of research [4]-[6], and the

specific application of order statistics to signal detection is
currently receiving some attention [7]. This is due to the

inherent robustness of order statistics in the presence of large

outliers (e.g., narrowband interference) that would signifi-

cantly degrade the sensitivity of more conventional mean-level-

based detection systems. The real issue in the application of

order statistics to signal detection is the system performance

for a given interference environment. An analysis of an order-
statistic-based detection system presented in [7] clearly

demonstrates the robustness of order statistic threshold esti-

mators to the presence of a single narrowband interferer

within the estimation window. Of course, in practice there

will typically be multiple interferers with different ampli-
tudes and bandwidths within the window depending on the

specific interference environment.

This article summarizes the results of a preliminary com-

puter-aided simulation analysis that has been carried out to
evaluate system performance in the presence of interference.

In performing this analysis, the interference environment has
been simulated based on the results of limited survey data

(collected between 1 and 2 GHz) which provides the percent-

age of spectral bins contaminated by RF interference (RFI) as

a function of the RFI power level. In addition to RFI, a broad-

band Gaussian system noise component is included in this

analysis. Ideally, the system threshold level will reflect the

spectral level of the broadband system noise and not the RFI.

This system performance evaluation is carried out as a func-

tion of the system noise level relative to the RFI. The results
of this analysis not only serve to assess system performance as

a function of various system parameters, but also provide

guidelines for choosing various system design parameters to

enhance system performance.

II. Detector and RFI Models

The basic detector system model currently under considera-

tion is depicted in Fig. 1. Here the digitized input data are
transformed into the frequency domain via an FFT processor

and the power in each FFT bin is accumulated over a specified

number of transforms. The resulting accumulated power data

is then split into two paths. The direct-through path is fed into

a 5-point convolutional filter which forms the convolution of

successive accumulated spectra with a 5-point finite impulse

response (FIR) filter. Specifically, let Xi(k ) denote the level of
the ith successive accumulated power spectrum at the kth

spectral (FFT) bin. Then the output from the 5-point convo-

lutional filter is given by:

4

= w
po

where the w/ are the FIR filter weights. As discussed in [3],
the filter weights depend on the characteristics of the receive

antenna beam pattern and are matched to the expected signa-
ture of a fixed source in the sky as it is traversed by the receive

beam. Furthermore, a 5-coefficient FIR filter turns out to be

sufficient to minimize signal-to-noise ratio (SNR) losses in-

duced by the antenna beam in conjunction with the finite time
interval between successive accumulated spectra [3]. For pur-

poses of this analysis, the FIR filter weights are considered to
be a set of fixed constants downloaded from the system

computer.

In addition to being directly convolved with the FIR filter,

the accumulated power spectral data are also utilized in deter-

mining the system threshold level. As indicated in Fig. 1, the
threshold determination is composed of three steps: (1) com-

pute the nth smallest power level; (2) convolve successive nth

smallest power levels with the FIR filter; and (3) multiply the
result from (2) by a fixed gain constant. The result of (2) is to

further smooth the nth order statistics computed in (1) in a

manner which is perfectly consistent with the convolution of

the power accumulation data in the direct-through path. Note

that this smoothing operation also reduces the variance of the

order statistics. The final step effectively determines the num-

ber of detected noise intervals (or false alarm rate) out of the

detector system. The gain constant in (3) is typically chosen

based on a system-noise-only (no RFI) assumption. The goal of

this analysis is to determine the threshold stability as well as the

number of spectral interval detections in the presence of RFI.

After convolution and threshold level determination, the

convolved data are thresholded and information concerning

detected spectral intervals (interval width, location, and

average power level) is passed on to the system computer.

Ideally, the thresholding serves to discard most of the noise

data (so that the system computer is not overloaded) while

simultaneously retaining the desired signal information. The

purpose of passing along detected intervals and not individual

spectral bin detections is to reduce the amount of hit data
which will arise from broadband interference sources with
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bandwidths well in excess of the FFT bin resolution (_30 Hz).

Interference-related hit data which is passed on to the com-

puter can then be identified (e.g., based on frequency or time

discrimination) and eliminated from further analysis.

The RFI model developed for the system performance eval-
uation is based on limited survey data collected in the 1-2 GHz

band. In collecting this data, a spectral resolution width of

10 kHz was used, and the average number of threshold detec.
tions attributed to RFI sources over a 1 GHz bandwidth was

computed as a function of the threshold level. The fraction of

spectral bins contaminated by RFI fit a power law model as
the threshold level decreased over the range from -80 dBm to

-120 dBm. Figure 2 represents the least squares fit to this

data. In Fig. 2, the log (base 10) of the fraction of RFI-

contaminated bins is plotted versus the RFI threshold level.

For levels above -80 dBm, the fraction of spectral bins con-

taminated by the RFI is assumed constant. Below -120 dBm,

the survey data has been extrapolated exponentially to -140

dBm. Below -140 dBm a constant profile of approximately

15 percent RFI contamination is assumed. The simulation

results presented in Section III are based on this RFI density

profile.

There are two basic limitations associated with this model.

First, there are currently no available RFI data measurements

below approximately -120 dBm. Even for a 10 kHz spectral re-

solution, this is well above the thermal noise level (_-150 dBm

assuming a nominal 10 K system temperature and I0 kHz

bandwidth). It was thus necessary to extrapolate the data into

the low noise regions of interest as indicated in Fig. 2. A sec-
ond limitation is that the RFI data used to construct this

model profile have been collected using a spectral resolution

(10 kHz) which is far coarser than the system goal (_30 Hz).

Consequently, the RFI realizations based on this density pro-
file will differ significantly from those corresponding to a nar-

rowband RFI profile. Nevertheless, system performance re-

sults based on this model do highlight the RFI model attri-

butes which most critically impact system performance in
general.

III. System Performance Assessment

In the evaluation of system performance, a computer simu-

lation test bed has been developed which generates realizations

of RFI based on the amplitude density model depicted in

Fig. 2. Specifically, the RFI amplitude range has been quan-
tized into 2.5 dBm intervals, and the appropriate number of

RFI components has been injected into each interval. Further-

more, the RFI components have been distributed into non-

overlapping frequency bin intervals with all of the RFI com-

ponents in a frequency interval having amplitudes lying within

a given 2.5 dBm amplitude interval. Each RFI frequency inter-

val is randomly positioned across the total number of spectral

bins selected (i.e., total instantaneous bandwidth), and the
width of each RFI interval is chosen randomly up to a maxi-

mum of 40 contiguous spectral bins. The resulting distribution

of the RFI in frequency is termed the RFI "mask." A sample

RFI mask is presented in Fig. 3, where the average interference-

to-noise ratio (INR) is plotted across a total of 4096 spectral

bins corresponding to a system noise level of -110 dBm. The

power law increase in the number of RFI components with

decreasing INR is clearly observed.

Each simulation run is composed of multiple realizations of

RFI and additive broadband system noise corresponding to a

fixed RFI mask (one independent mask per simulation run).

The RFI amplitude (dBm) is uniformly randomized within

each 2.5 dBm amplitude interval, and the phases of all RFI

components are uniformly randomized over [0,21r) once every
spectral accumulation cycle. Independent broadband noise

realizations (generated in the frequency domain) are computed

for each power spectrum input to the accumulator.

The simulation input parameters include (1) total number

of spectral bins (nominally 4096); (2) number of spectra per

accumulation cycle (nominally 8); (3) average system noise
level within a spectral bin (this varied between -100 and

-150 dBm); (4) rank number, n, for the order statistic (n = 10

or 60); (5) gain constant for computing the system threshold

corresponding to a 0.1 percent false alarm rate in the absence

of RFI; and (6) total number of accumulated spectra (nomi-
nally I000 per run). All of these parameters, including the RFI

mask, are held constant during a simulation run. In addition,

the 5 convolutional filter weights are always fixed (at the

values 0.64, 0.89, 1.0, 0.89, and 0.64).

The two primary outputs from the system simulations are
the nth order statistic and the number of detected noise inter-

vals, averaged over all realizations, as a function of the system

noise level. Plots of the order statistics (normalized by their

respective means in the absence of RFI) are presented in Fig. 4

corresponding to the nominal simulation input parameters

given above. As is seen, when the noise level is well above the

majority of RFI components, i.e., above -90 dBm, then the

spectral bins are dominated by system noise and the resulting

nth order statistics approach those for the noise-only distri-
bution. Conversely, as the system noise level decreases to well

below the smallest RFI component, i.e., below -140 dBm,

then the RFI components contaminate a fixed number of

spectral bins and the order statistics increase due to the cor-

responding reduction in the number of noise-only bins. This is

clearly observed in Fig. 4, where a significant inflation of both
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the 10th and the 60th smallest order statistics occurs as the

noise level decreases. The net result of this inflation is a loss in

detector sensitivity. However, the sensitivity loss associated
with either order statistic is much less than would occur using

a conventional average power estimator [7].

Plots of the average number of detected spectral intervals

corresponding to both the 10th smallest and 60th smallest
order statistics are presented in Fig. 5. As is seen for both

cases, the average number of detected intervals increases from

the noise-only limit of approximately 4 (0.1 percent of 4096

spectral bins) to over 80 at the -140 dBm noise level and then
back to approximately 50 for noise levels below -150 dBm.

At these lower levels, the detected spectral intervals are com-

posed almost exclusively of the RFI frequency intervals-an

average of 50 such intervals were generated in the RFI masks
used for these runs. The number of additional detected noise-

only intervals in this case is limited by the inflation of the
nth order statistics as noted above. As the system noise level

increases to -140 dBm, a level which corresponds to the

majority of the RFI components (see Fig. 2), it interferes
with the RFI to produce random "splittings" of the low-level,

RFI frequency intervals. These splittings are manifested as an
increase in the number of detected noise intervals to over

20 times that expected in the absence of RFI. Such an increase

could impact the ability of the system computer to process all
of the detected hit data. A more precise assessment of the

impact of RFI on system performance will, in turn, require a

more complete set of RFI survey data, which is clearly an

important area for future investigation.

IV. Conclusions

Although the results of this preliminary simulation anal-

ysis depend critically on the assumed RFI density model,

some general conclusions can be made. In particular, it is

noted that system performance depends most critically on the

distribution of RFI components at levels comparable to or

greater than the broadband system noise level. RFI compo-
nents well below the system noise level do not significantly

impact system performance. RFI components well in excess of

the system noise level contaminate a fixed number of spectral
bins and thus produce a significant inflation of the system
threshold due to the decrease in the number of noise-only

spectral bins. This inflation has the effect of lowering the aver-

age number of detected noise-only spectral intervals as well as

reducing detector sensitivity. Large RFI components also in-
crease the total number of detected spectral intervals depend-

ing on the number of RFI intervals present. Note that the
number of RFI intervals will, in turn, depend on the frequency
distribution of the RFI. A small number of strong broadband

RFI sources will not significantly increase the total number

of detected spectral intervals, whereas a large number of strong
narrowband RFI sources will produce a significant increase

in the number of interval detections. Furthermore, as the RFI

level approaches the system noise, additional spectral interval
detections will occur due to RFI interval splitting caused by

the interaction of the broadband system noise with the RFI.

This splitting phenomenon will occur regardless of whether
the RFI is narrow or broadband. Further analysis is currently

being carried out to assess system performance in more realis-
tic RFI environments.
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